Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. y
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{10y}{25}+\frac{26y}{40}
Ikkalkula 5 bil-power ta' 2 u tikseb 25.
\frac{2}{5}y+\frac{26y}{40}
Iddividi 10y b'25 biex tikseb\frac{2}{5}y.
\frac{2}{5}y+\frac{13}{20}y
Iddividi 26y b'40 biex tikseb\frac{13}{20}y.
\frac{21}{20}y
Ikkombina \frac{2}{5}y u \frac{13}{20}y biex tikseb \frac{21}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{10y}{25}+\frac{26y}{40})
Ikkalkula 5 bil-power ta' 2 u tikseb 25.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{26y}{40})
Iddividi 10y b'25 biex tikseb\frac{2}{5}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{13}{20}y)
Iddividi 26y b'40 biex tikseb\frac{13}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{21}{20}y)
Ikkombina \frac{2}{5}y u \frac{13}{20}y biex tikseb \frac{21}{20}y.
\frac{21}{20}y^{1-1}
Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
\frac{21}{20}y^{0}
Naqqas 1 minn 1.
\frac{21}{20}\times 1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{21}{20}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.