Evalwa
\frac{21y}{20}
Iddifferenzja w.r.t. y
\frac{21}{20} = 1\frac{1}{20} = 1.05
Graff
Sehem
Ikkupjat fuq il-klibbord
\frac{10y}{25}+\frac{26y}{40}
Ikkalkula 5 bil-power ta' 2 u tikseb 25.
\frac{2}{5}y+\frac{26y}{40}
Iddividi 10y b'25 biex tikseb\frac{2}{5}y.
\frac{2}{5}y+\frac{13}{20}y
Iddividi 26y b'40 biex tikseb\frac{13}{20}y.
\frac{21}{20}y
Ikkombina \frac{2}{5}y u \frac{13}{20}y biex tikseb \frac{21}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{10y}{25}+\frac{26y}{40})
Ikkalkula 5 bil-power ta' 2 u tikseb 25.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{26y}{40})
Iddividi 10y b'25 biex tikseb\frac{2}{5}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{2}{5}y+\frac{13}{20}y)
Iddividi 26y b'40 biex tikseb\frac{13}{20}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{21}{20}y)
Ikkombina \frac{2}{5}y u \frac{13}{20}y biex tikseb \frac{21}{20}y.
\frac{21}{20}y^{1-1}
Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
\frac{21}{20}y^{0}
Naqqas 1 minn 1.
\frac{21}{20}\times 1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{21}{20}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}