Fattur
\left(1-3t\right)\left(2t+1\right)
Evalwa
\left(1-3t\right)\left(2t+1\right)
Sehem
Ikkupjat fuq il-klibbord
-6t^{2}-t+1
Irranġa mill-ġdid il-polynomial biex tqiegħdu fil-forma standard. Qiegħed it-termini f'ordni mill-ogħla qawwa għall-aktar baxxa.
a+b=-1 ab=-6=-6
Iffattura l-espressjoni bl-iggruppar. L-ewwel, l-espressjoni teħtieġ tinkiteb mill-ġdid bħala -6t^{2}+at+bt+1. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
1,-6 2,-3
Minħabba li ab huwa negattiv, a u b għandhom sinjali opposti. Minħabba li a+b huwa negattiv, in-numru negattiv għandu l-valur assolut akbar mill-pożittiv. Elenka l-pari kollha bħal dawn li jagħtu prodott -6.
1-6=-5 2-3=-1
Ikkalkula s-somma għal kull par.
a=2 b=-3
Is-soluzzjoni hija l-par li jagħti s-somma -1.
\left(-6t^{2}+2t\right)+\left(-3t+1\right)
Erġa' ikteb -6t^{2}-t+1 bħala \left(-6t^{2}+2t\right)+\left(-3t+1\right).
2t\left(-3t+1\right)-3t+1
Iffattura ' l barra 2t fil- -6t^{2}+2t.
\left(-3t+1\right)\left(2t+1\right)
Iffattura 'l barra t-terminu komuni -3t+1 bl-użu ta' propjetà distributtiva.
-6t^{2}-t+1=0
Polynomial kwadratika tista' tiġi fatturata billi tuża t-trasformazzjoni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), fejn x_{1} u x_{2} huma s-soluzzjonijiet tal-ekwazzjoni kwadratika ax^{2}+bx+c=0.
t=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2\left(-6\right)}
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
t=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-6\right)}
Immultiplika -4 b'-6.
t=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-6\right)}
Żid 1 ma' 24.
t=\frac{-\left(-1\right)±5}{2\left(-6\right)}
Ħu l-għerq kwadrat ta' 25.
t=\frac{1±5}{2\left(-6\right)}
L-oppost ta' -1 huwa 1.
t=\frac{1±5}{-12}
Immultiplika 2 b'-6.
t=\frac{6}{-12}
Issa solvi l-ekwazzjoni t=\frac{1±5}{-12} fejn ± hija plus. Żid 1 ma' 5.
t=-\frac{1}{2}
Naqqas il-frazzjoni \frac{6}{-12} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 6.
t=-\frac{4}{-12}
Issa solvi l-ekwazzjoni t=\frac{1±5}{-12} fejn ± hija minus. Naqqas 5 minn 1.
t=\frac{1}{3}
Naqqas il-frazzjoni \frac{-4}{-12} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 4.
-6t^{2}-t+1=-6\left(t-\left(-\frac{1}{2}\right)\right)\left(t-\frac{1}{3}\right)
Iffattura l-espressjoni oriġinali permezz ta’ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Issostitwixxi -\frac{1}{2} għal x_{1} u \frac{1}{3} għal x_{2}.
-6t^{2}-t+1=-6\left(t+\frac{1}{2}\right)\left(t-\frac{1}{3}\right)
Issimplifika l-espressjonijiet kollha tal-formola p-\left(-q\right) sa p+q.
-6t^{2}-t+1=-6\times \frac{-2t-1}{-2}\left(t-\frac{1}{3}\right)
Żid \frac{1}{2} ma' t biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
-6t^{2}-t+1=-6\times \frac{-2t-1}{-2}\times \frac{-3t+1}{-3}
Naqqas \frac{1}{3} minn t billi ssib denominatur komuni u tnaqqas in-numerators. Imbagħad naqqas il-frazzjoni għall-inqas termini jekk possibbli.
-6t^{2}-t+1=-6\times \frac{\left(-2t-1\right)\left(-3t+1\right)}{-2\left(-3\right)}
Immultiplika \frac{-2t-1}{-2} b'\frac{-3t+1}{-3} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur. Imbagħad naqqas il-frazzjoni għall-inqas termini jekk possibbli.
-6t^{2}-t+1=-6\times \frac{\left(-2t-1\right)\left(-3t+1\right)}{6}
Immultiplika -2 b'-3.
-6t^{2}-t+1=-\left(-2t-1\right)\left(-3t+1\right)
Ikkanċella l-akbar fattur komuni 6 f'-6 u 6.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}