Evalwa
\frac{m^{2}-3mn-2n^{2}}{2m\left(m-2n\right)}
Espandi
\frac{m^{2}-3mn-2n^{2}}{2m\left(m-2n\right)}
Sehem
Ikkupjat fuq il-klibbord
1+\frac{n-m}{m-2n}+\frac{m^{2}-n^{2}}{2m^{2}-2mn}
Ikkombina m^{2} u m^{2} biex tikseb 2m^{2}.
1+\frac{n-m}{m-2n}+\frac{\left(m+n\right)\left(m-n\right)}{2m\left(m-n\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{m^{2}-n^{2}}{2m^{2}-2mn}.
1+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Annulla m-n fin-numeratur u d-denominatur.
\frac{m-2n}{m-2n}+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{m-2n}{m-2n}.
\frac{m-2n+n-m}{m-2n}+\frac{m+n}{2m}
Billi \frac{m-2n}{m-2n} u \frac{n-m}{m-2n} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-n}{m-2n}+\frac{m+n}{2m}
Ikkombina termini simili f'm-2n+n-m.
\frac{-n\times 2m}{2m\left(m-2n\right)}+\frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' m-2n u 2m huwa 2m\left(m-2n\right). Immultiplika \frac{-n}{m-2n} b'\frac{2m}{2m}. Immultiplika \frac{m+n}{2m} b'\frac{m-2n}{m-2n}.
\frac{-n\times 2m+\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Billi \frac{-n\times 2m}{2m\left(m-2n\right)} u \frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-2nm+m^{2}-2mn+nm-2n^{2}}{2m\left(m-2n\right)}
Agħmel il-multiplikazzjonijiet fi -n\times 2m+\left(m+n\right)\left(m-2n\right).
\frac{m^{2}-3nm-2n^{2}}{2m\left(m-2n\right)}
Ikkombina termini simili f'-2nm+m^{2}-2mn+nm-2n^{2}.
\frac{m^{2}-3nm-2n^{2}}{2m^{2}-4mn}
Espandi 2m\left(m-2n\right).
1+\frac{n-m}{m-2n}+\frac{m^{2}-n^{2}}{2m^{2}-2mn}
Ikkombina m^{2} u m^{2} biex tikseb 2m^{2}.
1+\frac{n-m}{m-2n}+\frac{\left(m+n\right)\left(m-n\right)}{2m\left(m-n\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{m^{2}-n^{2}}{2m^{2}-2mn}.
1+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Annulla m-n fin-numeratur u d-denominatur.
\frac{m-2n}{m-2n}+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{m-2n}{m-2n}.
\frac{m-2n+n-m}{m-2n}+\frac{m+n}{2m}
Billi \frac{m-2n}{m-2n} u \frac{n-m}{m-2n} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-n}{m-2n}+\frac{m+n}{2m}
Ikkombina termini simili f'm-2n+n-m.
\frac{-n\times 2m}{2m\left(m-2n\right)}+\frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' m-2n u 2m huwa 2m\left(m-2n\right). Immultiplika \frac{-n}{m-2n} b'\frac{2m}{2m}. Immultiplika \frac{m+n}{2m} b'\frac{m-2n}{m-2n}.
\frac{-n\times 2m+\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Billi \frac{-n\times 2m}{2m\left(m-2n\right)} u \frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-2nm+m^{2}-2mn+nm-2n^{2}}{2m\left(m-2n\right)}
Agħmel il-multiplikazzjonijiet fi -n\times 2m+\left(m+n\right)\left(m-2n\right).
\frac{m^{2}-3nm-2n^{2}}{2m\left(m-2n\right)}
Ikkombina termini simili f'-2nm+m^{2}-2mn+nm-2n^{2}.
\frac{m^{2}-3nm-2n^{2}}{2m^{2}-4mn}
Espandi 2m\left(m-2n\right).
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}