Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

1+\frac{n-m}{m-2n}+\frac{m^{2}-n^{2}}{2m^{2}-2mn}
Ikkombina m^{2} u m^{2} biex tikseb 2m^{2}.
1+\frac{n-m}{m-2n}+\frac{\left(m+n\right)\left(m-n\right)}{2m\left(m-n\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{m^{2}-n^{2}}{2m^{2}-2mn}.
1+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Annulla m-n fin-numeratur u d-denominatur.
\frac{m-2n}{m-2n}+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{m-2n}{m-2n}.
\frac{m-2n+n-m}{m-2n}+\frac{m+n}{2m}
Billi \frac{m-2n}{m-2n} u \frac{n-m}{m-2n} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-n}{m-2n}+\frac{m+n}{2m}
Ikkombina termini simili f'm-2n+n-m.
\frac{-n\times 2m}{2m\left(m-2n\right)}+\frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' m-2n u 2m huwa 2m\left(m-2n\right). Immultiplika \frac{-n}{m-2n} b'\frac{2m}{2m}. Immultiplika \frac{m+n}{2m} b'\frac{m-2n}{m-2n}.
\frac{-n\times 2m+\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Billi \frac{-n\times 2m}{2m\left(m-2n\right)} u \frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-2nm+m^{2}-2mn+nm-2n^{2}}{2m\left(m-2n\right)}
Agħmel il-multiplikazzjonijiet fi -n\times 2m+\left(m+n\right)\left(m-2n\right).
\frac{m^{2}-3nm-2n^{2}}{2m\left(m-2n\right)}
Ikkombina termini simili f'-2nm+m^{2}-2mn+nm-2n^{2}.
\frac{m^{2}-3nm-2n^{2}}{2m^{2}-4mn}
Espandi 2m\left(m-2n\right).
1+\frac{n-m}{m-2n}+\frac{m^{2}-n^{2}}{2m^{2}-2mn}
Ikkombina m^{2} u m^{2} biex tikseb 2m^{2}.
1+\frac{n-m}{m-2n}+\frac{\left(m+n\right)\left(m-n\right)}{2m\left(m-n\right)}
Iffattura l-espressjonijiet li mhumiex diġà fatturati f'\frac{m^{2}-n^{2}}{2m^{2}-2mn}.
1+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Annulla m-n fin-numeratur u d-denominatur.
\frac{m-2n}{m-2n}+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 1 b'\frac{m-2n}{m-2n}.
\frac{m-2n+n-m}{m-2n}+\frac{m+n}{2m}
Billi \frac{m-2n}{m-2n} u \frac{n-m}{m-2n} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-n}{m-2n}+\frac{m+n}{2m}
Ikkombina termini simili f'm-2n+n-m.
\frac{-n\times 2m}{2m\left(m-2n\right)}+\frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' m-2n u 2m huwa 2m\left(m-2n\right). Immultiplika \frac{-n}{m-2n} b'\frac{2m}{2m}. Immultiplika \frac{m+n}{2m} b'\frac{m-2n}{m-2n}.
\frac{-n\times 2m+\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Billi \frac{-n\times 2m}{2m\left(m-2n\right)} u \frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{-2nm+m^{2}-2mn+nm-2n^{2}}{2m\left(m-2n\right)}
Agħmel il-multiplikazzjonijiet fi -n\times 2m+\left(m+n\right)\left(m-2n\right).
\frac{m^{2}-3nm-2n^{2}}{2m\left(m-2n\right)}
Ikkombina termini simili f'-2nm+m^{2}-2mn+nm-2n^{2}.
\frac{m^{2}-3nm-2n^{2}}{2m^{2}-4mn}
Espandi 2m\left(m-2n\right).