Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Ikkalkula 10 bil-power ta' -6 u tikseb \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Immultiplika 9 u \frac{1}{1000000} biex tikseb \frac{9}{1000000}.
x=\frac{-45±\sqrt{45^{2}-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -500000 għal a, 45 għal b, u -\frac{9}{1000000} għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Ikkwadra 45.
x=\frac{-45±\sqrt{2025+2000000\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Immultiplika -4 b'-500000.
x=\frac{-45±\sqrt{2025-18}}{2\left(-500000\right)}
Immultiplika 2000000 b'-\frac{9}{1000000}.
x=\frac{-45±\sqrt{2007}}{2\left(-500000\right)}
Żid 2025 ma' -18.
x=\frac{-45±3\sqrt{223}}{2\left(-500000\right)}
Ħu l-għerq kwadrat ta' 2007.
x=\frac{-45±3\sqrt{223}}{-1000000}
Immultiplika 2 b'-500000.
x=\frac{3\sqrt{223}-45}{-1000000}
Issa solvi l-ekwazzjoni x=\frac{-45±3\sqrt{223}}{-1000000} fejn ± hija plus. Żid -45 ma' 3\sqrt{223}.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Iddividi -45+3\sqrt{223} b'-1000000.
x=\frac{-3\sqrt{223}-45}{-1000000}
Issa solvi l-ekwazzjoni x=\frac{-45±3\sqrt{223}}{-1000000} fejn ± hija minus. Naqqas 3\sqrt{223} minn -45.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Iddividi -45-3\sqrt{223} b'-1000000.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
L-ekwazzjoni issa solvuta.
-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Ikkalkula 10 bil-power ta' -6 u tikseb \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Immultiplika 9 u \frac{1}{1000000} biex tikseb \frac{9}{1000000}.
-500000x^{2}+45x=\frac{9}{1000000}
Żid \frac{9}{1000000} maż-żewġ naħat. Xi ħaġa plus żero jirriżulta f'dan in-numru stess.
\frac{-500000x^{2}+45x}{-500000}=\frac{\frac{9}{1000000}}{-500000}
Iddividi ż-żewġ naħat b'-500000.
x^{2}+\frac{45}{-500000}x=\frac{\frac{9}{1000000}}{-500000}
Meta tiddividi b'-500000 titneħħa l-multiplikazzjoni b'-500000.
x^{2}-\frac{9}{100000}x=\frac{\frac{9}{1000000}}{-500000}
Naqqas il-frazzjoni \frac{45}{-500000} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 5.
x^{2}-\frac{9}{100000}x=-\frac{9}{500000000000}
Iddividi \frac{9}{1000000} b'-500000.
x^{2}-\frac{9}{100000}x+\left(-\frac{9}{200000}\right)^{2}=-\frac{9}{500000000000}+\left(-\frac{9}{200000}\right)^{2}
Iddividi -\frac{9}{100000}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{9}{200000}. Imbagħad żid il-kwadru ta' -\frac{9}{200000} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=-\frac{9}{500000000000}+\frac{81}{40000000000}
Ikkwadra -\frac{9}{200000} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=\frac{2007}{1000000000000}
Żid -\frac{9}{500000000000} ma' \frac{81}{40000000000} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x-\frac{9}{200000}\right)^{2}=\frac{2007}{1000000000000}
Fattur x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{200000}\right)^{2}}=\sqrt{\frac{2007}{1000000000000}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{9}{200000}=\frac{3\sqrt{223}}{1000000} x-\frac{9}{200000}=-\frac{3\sqrt{223}}{1000000}
Issimplifika.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Żid \frac{9}{200000} maż-żewġ naħat tal-ekwazzjoni.