Solvi għal x
x = \frac{\sqrt{41} + 3}{8} \approx 1.17539053
x=\frac{3-\sqrt{41}}{8}\approx -0.42539053
Graff
Sehem
Ikkupjat fuq il-klibbord
-4x^{2}+3x+2=0
Immultiplika 0 u 7 biex tikseb 0.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -4 għal a, 3 għal b, u 2 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)\times 2}}{2\left(-4\right)}
Ikkwadra 3.
x=\frac{-3±\sqrt{9+16\times 2}}{2\left(-4\right)}
Immultiplika -4 b'-4.
x=\frac{-3±\sqrt{9+32}}{2\left(-4\right)}
Immultiplika 16 b'2.
x=\frac{-3±\sqrt{41}}{2\left(-4\right)}
Żid 9 ma' 32.
x=\frac{-3±\sqrt{41}}{-8}
Immultiplika 2 b'-4.
x=\frac{\sqrt{41}-3}{-8}
Issa solvi l-ekwazzjoni x=\frac{-3±\sqrt{41}}{-8} fejn ± hija plus. Żid -3 ma' \sqrt{41}.
x=\frac{3-\sqrt{41}}{8}
Iddividi -3+\sqrt{41} b'-8.
x=\frac{-\sqrt{41}-3}{-8}
Issa solvi l-ekwazzjoni x=\frac{-3±\sqrt{41}}{-8} fejn ± hija minus. Naqqas \sqrt{41} minn -3.
x=\frac{\sqrt{41}+3}{8}
Iddividi -3-\sqrt{41} b'-8.
x=\frac{3-\sqrt{41}}{8} x=\frac{\sqrt{41}+3}{8}
L-ekwazzjoni issa solvuta.
-4x^{2}+3x+2=0
Immultiplika 0 u 7 biex tikseb 0.
-4x^{2}+3x=-2
Naqqas 2 miż-żewġ naħat. Xi ħaġa mnaqqsa minn żero tagħti numru negattiv.
\frac{-4x^{2}+3x}{-4}=-\frac{2}{-4}
Iddividi ż-żewġ naħat b'-4.
x^{2}+\frac{3}{-4}x=-\frac{2}{-4}
Meta tiddividi b'-4 titneħħa l-multiplikazzjoni b'-4.
x^{2}-\frac{3}{4}x=-\frac{2}{-4}
Iddividi 3 b'-4.
x^{2}-\frac{3}{4}x=\frac{1}{2}
Naqqas il-frazzjoni \frac{-2}{-4} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{8}\right)^{2}
Iddividi -\frac{3}{4}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{3}{8}. Imbagħad żid il-kwadru ta' -\frac{3}{8} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
Ikkwadra -\frac{3}{8} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
Żid \frac{1}{2} ma' \frac{9}{64} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x-\frac{3}{8}\right)^{2}=\frac{41}{64}
Fattur x^{2}-\frac{3}{4}x+\frac{9}{64}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{3}{8}=\frac{\sqrt{41}}{8} x-\frac{3}{8}=-\frac{\sqrt{41}}{8}
Issimplifika.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
Żid \frac{3}{8} maż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}