Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-4x^{4}y^{2}}{-2x^{2}y^{2}}\right)+2x^{2}y
Annulla -3xy fin-numeratur u d-denominatur.
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-2x^{2}}{-1}\right)+2x^{2}y
Annulla 2x^{2}y^{2} fin-numeratur u d-denominatur.
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-2x^{2}\right)+2x^{2}y
Kwalunkwe ħaġa diviża b '-1 jagħtik oppost tiegħu.
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(-2\right)x+2x^{2}y
Naqqas 2x^{2} minn 2x^{2} biex tikseb 0.
x-\left(x^{2}-x^{2}+1-xy-1\right)\left(-2\right)x+2x^{2}y
Biex issib l-oppost ta' x^{2}-1, sib l-oppost ta' kull terminu.
x-\left(1-xy-1\right)\left(-2\right)x+2x^{2}y
Ikkombina x^{2} u -x^{2} biex tikseb 0.
x-\left(-xy\left(-2\right)x\right)+2x^{2}y
Naqqas 1 minn 1 biex tikseb 0.
x-2xyx+2x^{2}y
Immultiplika -1 u -2 biex tikseb 2.
x-2x^{2}y+2x^{2}y
Immultiplika x u x biex tikseb x^{2}.
x
Ikkombina -2x^{2}y u 2x^{2}y biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-4x^{4}y^{2}}{-2x^{2}y^{2}}\right)+2x^{2}y)
Annulla -3xy fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-2x^{2}}{-1}\right)+2x^{2}y)
Annulla 2x^{2}y^{2} fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-2x^{2}\right)+2x^{2}y)
Kwalunkwe ħaġa diviża b '-1 jagħtik oppost tiegħu.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(-2\right)x+2x^{2}y)
Naqqas 2x^{2} minn 2x^{2} biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-x^{2}+1-xy-1\right)\left(-2\right)x+2x^{2}y)
Biex issib l-oppost ta' x^{2}-1, sib l-oppost ta' kull terminu.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(1-xy-1\right)\left(-2\right)x+2x^{2}y)
Ikkombina x^{2} u -x^{2} biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(-xy\left(-2\right)x\right)+2x^{2}y)
Naqqas 1 minn 1 biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2xyx+2x^{2}y)
Immultiplika -1 u -2 biex tikseb 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2x^{2}y+2x^{2}y)
Immultiplika x u x biex tikseb x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Ikkombina -2x^{2}y u 2x^{2}y biex tikseb 0.
x^{1-1}
Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
x^{0}
Naqqas 1 minn 1.
1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.