Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika x+2 b'\frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x-1\right)-4}{x-1}
Billi \frac{\left(x+2\right)\left(x-1\right)}{x-1} u \frac{4}{x-1} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{x^{2}-x+2x-2-4}{x-1}
Agħmel il-multiplikazzjonijiet fi \left(x+2\right)\left(x-1\right)-4.
\frac{x^{2}+x-6}{x-1}
Ikkombina termini simili f'x^{2}-x+2x-2-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika x+2 b'\frac{x-1}{x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)-4}{x-1})
Billi \frac{\left(x+2\right)\left(x-1\right)}{x-1} u \frac{4}{x-1} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-x+2x-2-4}{x-1})
Agħmel il-multiplikazzjonijiet fi \left(x+2\right)\left(x-1\right)-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x-6}{x-1})
Ikkombina termini simili f'x^{2}-x+2x-2-4.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1}-6)-\left(x^{2}+x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\left(x^{1}-1\right)\left(2x^{2-1}+x^{1-1}\right)-\left(x^{2}+x^{1}-6\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
\frac{\left(x^{1}-1\right)\left(2x^{1}+x^{0}\right)-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Issimplifika.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Immultiplika x^{1}-1 b'2x^{1}+x^{0}.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}x^{0}+x^{1}x^{0}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Immultiplika x^{2}+x^{1}-6 b'x^{0}.
\frac{2x^{1+1}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom.
\frac{2x^{2}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Issimplifika.
\frac{x^{2}-2x^{1}+5x^{0}}{\left(x^{1}-1\right)^{2}}
Ikkombina termini simili.
\frac{x^{2}-2x+5x^{0}}{\left(x-1\right)^{2}}
Għal kwalunkwe terminu t, t^{1}=t.
\frac{x^{2}-2x+5\times 1}{\left(x-1\right)^{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\frac{x^{2}-2x+5}{\left(x-1\right)^{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.