Aqbeż għall-kontenut ewlieni
Solvi għal m
Tick mark Image
Solvi għal n
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Immultiplika x u x biex tikseb x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Uża l-propjetà distributtiva biex timmultiplika x^{2} b'6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Uża l-propjetà distributtiva biex timmultiplika 6x^{2}+x^{3} b'm.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Uża l-propjetà distributtiva biex timmultiplika 6x^{2}m+x^{3}m b'o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Uża l-propjetà distributtiva biex timmultiplika 6x^{2}mo+x^{3}mo b'n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Biex issib l-oppost ta' 6x^{2}mon+x^{3}mon, sib l-oppost ta' kull terminu.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Naqqas x^{2} miż-żewġ naħat.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Żid 14x maż-żewġ naħat.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Naqqas 49 miż-żewġ naħat.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Naqqas 49 minn -\frac{1}{20} biex tikseb -\frac{981}{20}.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
Ikkombina t-termini kollha li fihom m.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
L-ekwazzjoni hija f'forma standard.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Iddividi ż-żewġ naħat b'-6x^{2}on-x^{3}on.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Meta tiddividi b'-6x^{2}on-x^{3}on titneħħa l-multiplikazzjoni b'-6x^{2}on-x^{3}on.
m=\frac{-20x^{2}+280x-981}{-20no\left(x+6\right)x^{2}}
Iddividi -\frac{981}{20}-x^{2}+14x b'-6x^{2}on-x^{3}on.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Immultiplika x u x biex tikseb x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Uża l-propjetà distributtiva biex timmultiplika x^{2} b'6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Uża l-propjetà distributtiva biex timmultiplika 6x^{2}+x^{3} b'm.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Uża l-propjetà distributtiva biex timmultiplika 6x^{2}m+x^{3}m b'o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Uża l-propjetà distributtiva biex timmultiplika 6x^{2}mo+x^{3}mo b'n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Biex issib l-oppost ta' 6x^{2}mon+x^{3}mon, sib l-oppost ta' kull terminu.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Naqqas x^{2} miż-żewġ naħat.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Żid 14x maż-żewġ naħat.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Naqqas 49 miż-żewġ naħat.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Naqqas 49 minn -\frac{1}{20} biex tikseb -\frac{981}{20}.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
Ikkombina t-termini kollha li fihom n.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
L-ekwazzjoni hija f'forma standard.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Iddividi ż-żewġ naħat b'-6x^{2}mo-x^{3}mo.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Meta tiddividi b'-6x^{2}mo-x^{3}mo titneħħa l-multiplikazzjoni b'-6x^{2}mo-x^{3}mo.
n=\frac{-20x^{2}+280x-981}{-20mo\left(x+6\right)x^{2}}
Iddividi -\frac{981}{20}-x^{2}+14x b'-6x^{2}mo-x^{3}mo.