Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x^{2}-2x+x\sqrt{3}-2x+4-2\sqrt{3}-\sqrt{3}x+2\sqrt{3}-\left(\sqrt{3}\right)^{2}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' x-2-\sqrt{3} b'kull terminu ta' x-2+\sqrt{3}.
x^{2}-4x+x\sqrt{3}+4-2\sqrt{3}-\sqrt{3}x+2\sqrt{3}-\left(\sqrt{3}\right)^{2}
Ikkombina -2x u -2x biex tikseb -4x.
x^{2}-4x+4-2\sqrt{3}+2\sqrt{3}-\left(\sqrt{3}\right)^{2}
Ikkombina x\sqrt{3} u -\sqrt{3}x biex tikseb 0.
x^{2}-4x+4-\left(\sqrt{3}\right)^{2}
Ikkombina -2\sqrt{3} u 2\sqrt{3} biex tikseb 0.
x^{2}-4x+4-3
Il-kwadrat ta' \sqrt{3} huwa 3.
x^{2}-4x+1
Naqqas 3 minn 4 biex tikseb 1.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+x\sqrt{3}-2x+4-2\sqrt{3}-\sqrt{3}x+2\sqrt{3}-\left(\sqrt{3}\right)^{2})
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' x-2-\sqrt{3} b'kull terminu ta' x-2+\sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x+x\sqrt{3}+4-2\sqrt{3}-\sqrt{3}x+2\sqrt{3}-\left(\sqrt{3}\right)^{2})
Ikkombina -2x u -2x biex tikseb -4x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x+4-2\sqrt{3}+2\sqrt{3}-\left(\sqrt{3}\right)^{2})
Ikkombina x\sqrt{3} u -\sqrt{3}x biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x+4-\left(\sqrt{3}\right)^{2})
Ikkombina -2\sqrt{3} u 2\sqrt{3} biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x+4-3)
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-4x+1)
Naqqas 3 minn 4 biex tikseb 1.
2x^{2-1}-4x^{1-1}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
2x^{1}-4x^{1-1}
Naqqas 1 minn 2.
2x^{1}-4x^{0}
Naqqas 1 minn 1.
2x-4x^{0}
Għal kwalunkwe terminu t, t^{1}=t.
2x-4
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.