Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x^{2}-x+x\sqrt{2}-x+1-\sqrt{2}-\sqrt{2}x+\sqrt{2}-\left(\sqrt{2}\right)^{2}
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' x-1-\sqrt{2} b'kull terminu ta' x-1+\sqrt{2}.
x^{2}-2x+x\sqrt{2}+1-\sqrt{2}-\sqrt{2}x+\sqrt{2}-\left(\sqrt{2}\right)^{2}
Ikkombina -x u -x biex tikseb -2x.
x^{2}-2x+1-\sqrt{2}+\sqrt{2}-\left(\sqrt{2}\right)^{2}
Ikkombina x\sqrt{2} u -\sqrt{2}x biex tikseb 0.
x^{2}-2x+1-\left(\sqrt{2}\right)^{2}
Ikkombina -\sqrt{2} u \sqrt{2} biex tikseb 0.
x^{2}-2x+1-2
Il-kwadrat ta' \sqrt{2} huwa 2.
x^{2}-2x-1
Naqqas 2 minn 1 biex tikseb -1.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x+x\sqrt{2}-x+1-\sqrt{2}-\sqrt{2}x+\sqrt{2}-\left(\sqrt{2}\right)^{2})
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' x-1-\sqrt{2} b'kull terminu ta' x-1+\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+x\sqrt{2}+1-\sqrt{2}-\sqrt{2}x+\sqrt{2}-\left(\sqrt{2}\right)^{2})
Ikkombina -x u -x biex tikseb -2x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+1-\sqrt{2}+\sqrt{2}-\left(\sqrt{2}\right)^{2})
Ikkombina x\sqrt{2} u -\sqrt{2}x biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+1-\left(\sqrt{2}\right)^{2})
Ikkombina -\sqrt{2} u \sqrt{2} biex tikseb 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x+1-2)
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x-1)
Naqqas 2 minn 1 biex tikseb -1.
2x^{2-1}-2x^{1-1}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
2x^{1}-2x^{1-1}
Naqqas 1 minn 2.
2x^{1}-2x^{0}
Naqqas 1 minn 1.
2x-2x^{0}
Għal kwalunkwe terminu t, t^{1}=t.
2x-2
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.