Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x^{2}+4x+4-3\left(x+2\right)-4=0
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Uża l-propjetà distributtiva biex timmultiplika -3 b'x+2.
x^{2}+x+4-6-4=0
Ikkombina 4x u -3x biex tikseb x.
x^{2}+x-2-4=0
Naqqas 6 minn 4 biex tikseb -2.
x^{2}+x-6=0
Naqqas 4 minn -2 biex tikseb -6.
a+b=1 ab=-6
Biex issolvi l-ekwazzjoni, iffattura x^{2}+x-6 billi tuża l-formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
-1,6 -2,3
Minħabba li ab huwa negattiv, a u b għandhom sinjali opposti. Minħabba li a+b huwa pożittiv, in-numru pożittiv għandu l-valur assolut akbar min-negattiv. Elenka l-pari kollha bħal dawn li jagħtu prodott -6.
-1+6=5 -2+3=1
Ikkalkula s-somma għal kull par.
a=-2 b=3
Is-soluzzjoni hija l-par li jagħti s-somma 1.
\left(x-2\right)\left(x+3\right)
Erġa' ikteb l-espressjoni ffatturata \left(x+a\right)\left(x+b\right) billi tuża l-valuri miksuba.
x=2 x=-3
Biex issib soluzzjonijiet tal-ekwazzjoni, solvi x-2=0 u x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Uża l-propjetà distributtiva biex timmultiplika -3 b'x+2.
x^{2}+x+4-6-4=0
Ikkombina 4x u -3x biex tikseb x.
x^{2}+x-2-4=0
Naqqas 6 minn 4 biex tikseb -2.
x^{2}+x-6=0
Naqqas 4 minn -2 biex tikseb -6.
a+b=1 ab=1\left(-6\right)=-6
Biex issolvi l-ekwazzjoni, iffatura n-naħa tax-xellug bl-iggruppar. L-ewwel, in-naħa tax-xellug jeħtieġ tinkiteb mill-ġdid bħala x^{2}+ax+bx-6. Biex issib a u b, ikkonfigura sistema biex tiġi solvuta.
-1,6 -2,3
Minħabba li ab huwa negattiv, a u b għandhom sinjali opposti. Minħabba li a+b huwa pożittiv, in-numru pożittiv għandu l-valur assolut akbar min-negattiv. Elenka l-pari kollha bħal dawn li jagħtu prodott -6.
-1+6=5 -2+3=1
Ikkalkula s-somma għal kull par.
a=-2 b=3
Is-soluzzjoni hija l-par li jagħti s-somma 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
Erġa' ikteb x^{2}+x-6 bħala \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
Fattur x fl-ewwel u 3 fit-tieni grupp.
\left(x-2\right)\left(x+3\right)
Iffattura 'l barra t-terminu komuni x-2 bl-użu ta' propjetà distributtiva.
x=2 x=-3
Biex issib soluzzjonijiet tal-ekwazzjoni, solvi x-2=0 u x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Uża l-propjetà distributtiva biex timmultiplika -3 b'x+2.
x^{2}+x+4-6-4=0
Ikkombina 4x u -3x biex tikseb x.
x^{2}+x-2-4=0
Naqqas 6 minn 4 biex tikseb -2.
x^{2}+x-6=0
Naqqas 4 minn -2 biex tikseb -6.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 1 għal a, 1 għal b, u -6 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
Ikkwadra 1.
x=\frac{-1±\sqrt{1+24}}{2}
Immultiplika -4 b'-6.
x=\frac{-1±\sqrt{25}}{2}
Żid 1 ma' 24.
x=\frac{-1±5}{2}
Ħu l-għerq kwadrat ta' 25.
x=\frac{4}{2}
Issa solvi l-ekwazzjoni x=\frac{-1±5}{2} fejn ± hija plus. Żid -1 ma' 5.
x=2
Iddividi 4 b'2.
x=-\frac{6}{2}
Issa solvi l-ekwazzjoni x=\frac{-1±5}{2} fejn ± hija minus. Naqqas 5 minn -1.
x=-3
Iddividi -6 b'2.
x=2 x=-3
L-ekwazzjoni issa solvuta.
x^{2}+4x+4-3\left(x+2\right)-4=0
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Uża l-propjetà distributtiva biex timmultiplika -3 b'x+2.
x^{2}+x+4-6-4=0
Ikkombina 4x u -3x biex tikseb x.
x^{2}+x-2-4=0
Naqqas 6 minn 4 biex tikseb -2.
x^{2}+x-6=0
Naqqas 4 minn -2 biex tikseb -6.
x^{2}+x=6
Żid 6 maż-żewġ naħat. Xi ħaġa plus żero jirriżulta f'dan in-numru stess.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Iddividi 1, il-koeffiċjent tat-terminu x, b'2 biex tikseb \frac{1}{2}. Imbagħad żid il-kwadru ta' \frac{1}{2} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Ikkwadra \frac{1}{2} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Żid 6 ma' \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Fattur x^{2}+x+\frac{1}{4}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Issimplifika.
x=2 x=-3
Naqqas \frac{1}{2} miż-żewġ naħat tal-ekwazzjoni.