Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. a
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika a-b b'\frac{a+b}{a+b}.
\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a}
Billi \frac{\left(a-b\right)\left(a+b\right)}{a+b} u \frac{b^{2}}{a+b} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a}
Agħmel il-multiplikazzjonijiet fi \left(a-b\right)\left(a+b\right)+b^{2}.
\frac{a^{2}}{a+b}\times \frac{a+b}{a}
Ikkombina termini simili f'a^{2}+ab-ba-b^{2}+b^{2}.
\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a}
Immultiplika \frac{a^{2}}{a+b} b'\frac{a+b}{a} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
a
Annulla a\left(a+b\right) fin-numeratur u d-denominatur.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a})
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika a-b b'\frac{a+b}{a+b}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a})
Billi \frac{\left(a-b\right)\left(a+b\right)}{a+b} u \frac{b^{2}}{a+b} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a})
Agħmel il-multiplikazzjonijiet fi \left(a-b\right)\left(a+b\right)+b^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}}{a+b}\times \frac{a+b}{a})
Ikkombina termini simili f'a^{2}+ab-ba-b^{2}+b^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a})
Immultiplika \frac{a^{2}}{a+b} b'\frac{a+b}{a} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Annulla a\left(a+b\right) fin-numeratur u d-denominatur.
a^{1-1}
Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
a^{0}
Naqqas 1 minn 1.
1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.