Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. a
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

a-0.23+35\left(-0.01\right)-\left(-2.1\left(-0.2\right)\right)
Immultiplika 2.3 u 0.1 biex tikseb 0.23.
a-0.23-0.35-\left(-2.1\left(-0.2\right)\right)
Immultiplika 35 u -0.01 biex tikseb -0.35.
a-0.58-\left(-2.1\left(-0.2\right)\right)
Naqqas 0.35 minn -0.23 biex tikseb -0.58.
a-0.58-0.42
Immultiplika -2.1 u -0.2 biex tikseb 0.42.
a-1
Naqqas 0.42 minn -0.58 biex tikseb -1.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0.23+35\left(-0.01\right)-\left(-2.1\left(-0.2\right)\right))
Immultiplika 2.3 u 0.1 biex tikseb 0.23.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0.23-0.35-\left(-2.1\left(-0.2\right)\right))
Immultiplika 35 u -0.01 biex tikseb -0.35.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0.58-\left(-2.1\left(-0.2\right)\right))
Naqqas 0.35 minn -0.23 biex tikseb -0.58.
\frac{\mathrm{d}}{\mathrm{d}a}(a-0.58-0.42)
Immultiplika -2.1 u -0.2 biex tikseb 0.42.
\frac{\mathrm{d}}{\mathrm{d}a}(a-1)
Naqqas 0.42 minn -0.58 biex tikseb -1.
a^{1-1}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
a^{0}
Naqqas 1 minn 1.
1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.