Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. s
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

10s^{2}+9s+6s^{3}+7s+5
Ikkombina 7s^{2} u 3s^{2} biex tikseb 10s^{2}.
10s^{2}+16s+6s^{3}+5
Ikkombina 9s u 7s biex tikseb 16s.
\frac{\mathrm{d}}{\mathrm{d}s}(10s^{2}+9s+6s^{3}+7s+5)
Ikkombina 7s^{2} u 3s^{2} biex tikseb 10s^{2}.
\frac{\mathrm{d}}{\mathrm{d}s}(10s^{2}+16s+6s^{3}+5)
Ikkombina 9s u 7s biex tikseb 16s.
2\times 10s^{2-1}+16s^{1-1}+3\times 6s^{3-1}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
20s^{2-1}+16s^{1-1}+3\times 6s^{3-1}
Immultiplika 2 b'10.
20s^{1}+16s^{1-1}+3\times 6s^{3-1}
Naqqas 1 minn 2.
20s^{1}+16s^{0}+3\times 6s^{3-1}
Naqqas 1 minn 1.
20s^{1}+16s^{0}+18s^{3-1}
Immultiplika 1 b'16.
20s^{1}+16s^{0}+18s^{2}
Naqqas 1 minn 3.
20s+16s^{0}+18s^{2}
Għal kwalunkwe terminu t, t^{1}=t.
20s+16\times 1+18s^{2}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
20s+16+18s^{2}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.