Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

2x^{2}-x-3=3
Uża l-propjetà distributtiva biex timmultiplika 2x-3 b'x+1 u kkombina termini simili.
2x^{2}-x-3-3=0
Naqqas 3 miż-żewġ naħat.
2x^{2}-x-6=0
Naqqas 3 minn -3 biex tikseb -6.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 2 għal a, -1 għal b, u -6 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Immultiplika -4 b'2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Immultiplika -8 b'-6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Żid 1 ma' 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Ħu l-għerq kwadrat ta' 49.
x=\frac{1±7}{2\times 2}
L-oppost ta' -1 huwa 1.
x=\frac{1±7}{4}
Immultiplika 2 b'2.
x=\frac{8}{4}
Issa solvi l-ekwazzjoni x=\frac{1±7}{4} fejn ± hija plus. Żid 1 ma' 7.
x=2
Iddividi 8 b'4.
x=-\frac{6}{4}
Issa solvi l-ekwazzjoni x=\frac{1±7}{4} fejn ± hija minus. Naqqas 7 minn 1.
x=-\frac{3}{2}
Naqqas il-frazzjoni \frac{-6}{4} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
x=2 x=-\frac{3}{2}
L-ekwazzjoni issa solvuta.
2x^{2}-x-3=3
Uża l-propjetà distributtiva biex timmultiplika 2x-3 b'x+1 u kkombina termini simili.
2x^{2}-x=3+3
Żid 3 maż-żewġ naħat.
2x^{2}-x=6
Żid 3 u 3 biex tikseb 6.
\frac{2x^{2}-x}{2}=\frac{6}{2}
Iddividi ż-żewġ naħat b'2.
x^{2}-\frac{1}{2}x=\frac{6}{2}
Meta tiddividi b'2 titneħħa l-multiplikazzjoni b'2.
x^{2}-\frac{1}{2}x=3
Iddividi 6 b'2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
Iddividi -\frac{1}{2}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{1}{4}. Imbagħad żid il-kwadru ta' -\frac{1}{4} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Ikkwadra -\frac{1}{4} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Żid 3 ma' \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
Fattur x^{2}-\frac{1}{2}x+\frac{1}{16}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
Issimplifika.
x=2 x=-\frac{3}{2}
Żid \frac{1}{4} maż-żewġ naħat tal-ekwazzjoni.