Evalwa
-\frac{25xy}{6}+x^{2}
Espandi
-\frac{25xy}{6}+x^{2}
Sehem
Ikkupjat fuq il-klibbord
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2x+\frac{1}{3}y b'kull terminu ta' x-3y.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Immultiplika y u y biex tikseb y^{2}.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Ikkombina -6xy u \frac{1}{3}yx biex tikseb -\frac{17}{3}xy.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Immultiplika \frac{1}{3} u -3 biex tikseb \frac{-3}{3}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Iddividi -3 b'3 biex tikseb-1.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2x+y b'kull terminu ta' \frac{1}{2}x-y.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Immultiplika x u x biex tikseb x^{2}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Annulla 2 u 2.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
Ikkombina -2xy u y\times \frac{1}{2}x biex tikseb -\frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
Biex issib l-oppost ta' x^{2}-\frac{3}{2}xy-y^{2}, sib l-oppost ta' kull terminu.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
L-oppost ta' -\frac{3}{2}xy huwa \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
L-oppost ta' -y^{2} huwa y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
Ikkombina 2x^{2} u -x^{2} biex tikseb x^{2}.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
Ikkombina -\frac{17}{3}xy u \frac{3}{2}xy biex tikseb -\frac{25}{6}xy.
x^{2}-\frac{25}{6}xy
Ikkombina -y^{2} u y^{2} biex tikseb 0.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2x+\frac{1}{3}y b'kull terminu ta' x-3y.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Immultiplika y u y biex tikseb y^{2}.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Ikkombina -6xy u \frac{1}{3}yx biex tikseb -\frac{17}{3}xy.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Immultiplika \frac{1}{3} u -3 biex tikseb \frac{-3}{3}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Iddividi -3 b'3 biex tikseb-1.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2x+y b'kull terminu ta' \frac{1}{2}x-y.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Immultiplika x u x biex tikseb x^{2}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Annulla 2 u 2.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
Ikkombina -2xy u y\times \frac{1}{2}x biex tikseb -\frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
Biex issib l-oppost ta' x^{2}-\frac{3}{2}xy-y^{2}, sib l-oppost ta' kull terminu.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
L-oppost ta' -\frac{3}{2}xy huwa \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
L-oppost ta' -y^{2} huwa y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
Ikkombina 2x^{2} u -x^{2} biex tikseb x^{2}.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
Ikkombina -\frac{17}{3}xy u \frac{3}{2}xy biex tikseb -\frac{25}{6}xy.
x^{2}-\frac{25}{6}xy
Ikkombina -y^{2} u y^{2} biex tikseb 0.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}