Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2x+\frac{1}{3}y b'kull terminu ta' x-3y.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Immultiplika y u y biex tikseb y^{2}.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Ikkombina -6xy u \frac{1}{3}yx biex tikseb -\frac{17}{3}xy.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Immultiplika \frac{1}{3} u -3 biex tikseb \frac{-3}{3}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Iddividi -3 b'3 biex tikseb-1.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2x+y b'kull terminu ta' \frac{1}{2}x-y.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Immultiplika x u x biex tikseb x^{2}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Annulla 2 u 2.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
Ikkombina -2xy u y\times \frac{1}{2}x biex tikseb -\frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
Biex issib l-oppost ta' x^{2}-\frac{3}{2}xy-y^{2}, sib l-oppost ta' kull terminu.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
L-oppost ta' -\frac{3}{2}xy huwa \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
L-oppost ta' -y^{2} huwa y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
Ikkombina 2x^{2} u -x^{2} biex tikseb x^{2}.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
Ikkombina -\frac{17}{3}xy u \frac{3}{2}xy biex tikseb -\frac{25}{6}xy.
x^{2}-\frac{25}{6}xy
Ikkombina -y^{2} u y^{2} biex tikseb 0.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y\left(-3\right)y-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2x+\frac{1}{3}y b'kull terminu ta' x-3y.
2x^{2}-6xy+\frac{1}{3}yx+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Immultiplika y u y biex tikseb y^{2}.
2x^{2}-\frac{17}{3}xy+\frac{1}{3}y^{2}\left(-3\right)-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Ikkombina -6xy u \frac{1}{3}yx biex tikseb -\frac{17}{3}xy.
2x^{2}-\frac{17}{3}xy+\frac{-3}{3}y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Immultiplika \frac{1}{3} u -3 biex tikseb \frac{-3}{3}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x+y\right)\left(\frac{1}{2}x-y\right)
Iddividi -3 b'3 biex tikseb-1.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x\times \frac{1}{2}x-2xy+y\times \frac{1}{2}x-y^{2}\right)
Applika l-propjetà distributtiva billi timmultiplika kull terminu ta' 2x+y b'kull terminu ta' \frac{1}{2}x-y.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(2x^{2}\times \frac{1}{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Immultiplika x u x biex tikseb x^{2}.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-2xy+y\times \frac{1}{2}x-y^{2}\right)
Annulla 2 u 2.
2x^{2}-\frac{17}{3}xy-y^{2}-\left(x^{2}-\frac{3}{2}xy-y^{2}\right)
Ikkombina -2xy u y\times \frac{1}{2}x biex tikseb -\frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}-\left(-\frac{3}{2}xy\right)-\left(-y^{2}\right)
Biex issib l-oppost ta' x^{2}-\frac{3}{2}xy-y^{2}, sib l-oppost ta' kull terminu.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy-\left(-y^{2}\right)
L-oppost ta' -\frac{3}{2}xy huwa \frac{3}{2}xy.
2x^{2}-\frac{17}{3}xy-y^{2}-x^{2}+\frac{3}{2}xy+y^{2}
L-oppost ta' -y^{2} huwa y^{2}.
x^{2}-\frac{17}{3}xy-y^{2}+\frac{3}{2}xy+y^{2}
Ikkombina 2x^{2} u -x^{2} biex tikseb x^{2}.
x^{2}-\frac{25}{6}xy-y^{2}+y^{2}
Ikkombina -\frac{17}{3}xy u \frac{3}{2}xy biex tikseb -\frac{25}{6}xy.
x^{2}-\frac{25}{6}xy
Ikkombina -y^{2} u y^{2} biex tikseb 0.