Aqbeż għall-kontenut ewlieni
Iddifferenzja w.r.t. x
Tick mark Image
Evalwa
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{1}{2}\left(2x^{1}+1\right)^{\frac{1}{2}-1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1}+1)
Jekk F hija l-kompożizzjoni ta' żewġ funzjonijiet differenzjabbli f\left(u\right) u u=g\left(x\right), jiġifieri, jekk F\left(x\right)=f\left(g\left(x\right)\right), mela d-derivattiv ta' F huwa d-derivattiv ta' f fir-rigward ta' u immultiplikat bid-derivattiv ta' g fir-rigward ta' x, jiġifieri, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{1}{2}\left(2x^{1}+1\right)^{-\frac{1}{2}}\times 2x^{1-1}
Id-derivattiv ta' polynomial huwa s-somma tad-derivattivi tat-termini tiegħu. Id-derivattiv ta' kwalunkwe terminu kostanti huwa 0. Id-derivattiv ta' ax^{n} huwa nax^{n-1}.
x^{0}\left(2x^{1}+1\right)^{-\frac{1}{2}}
Issimplifika.
x^{0}\left(2x+1\right)^{-\frac{1}{2}}
Għal kwalunkwe terminu t, t^{1}=t.
1\left(2x+1\right)^{-\frac{1}{2}}
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
\left(2x+1\right)^{-\frac{1}{2}}
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.