Evalwa
\sqrt{10}\approx 3.16227766
Sehem
Ikkupjat fuq il-klibbord
\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\sqrt{2}+\sqrt{5}\right)^{2}.
2+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Il-kwadrat ta' \sqrt{2} huwa 2.
2+2\sqrt{10}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Biex timmultiplika \sqrt{2} u \sqrt{5}, immultiplika n-numri taħt l-għerq kwadrat.
2+2\sqrt{10}+5-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Il-kwadrat ta' \sqrt{5} huwa 5.
7+2\sqrt{10}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Żid 2 u 5 biex tikseb 7.
7+2\sqrt{10}-\left(4+4\sqrt{10}+\left(\sqrt{10}\right)^{2}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(2+\sqrt{10}\right)^{2}.
7+2\sqrt{10}-\left(4+4\sqrt{10}+10\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Il-kwadrat ta' \sqrt{10} huwa 10.
7+2\sqrt{10}-\left(14+4\sqrt{10}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Żid 4 u 10 biex tikseb 14.
7+2\sqrt{10}-14-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Biex issib l-oppost ta' 14+4\sqrt{10}, sib l-oppost ta' kull terminu.
-7+2\sqrt{10}-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Naqqas 14 minn 7 biex tikseb -7.
-7-2\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Ikkombina 2\sqrt{10} u -4\sqrt{10} biex tikseb -2\sqrt{10}.
-7-2\sqrt{10}+3\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Iffattura 90=3^{2}\times 10. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{3^{2}\times 10} bħala l-prodott tal-għeruq kwadrati \sqrt{3^{2}}\sqrt{10}. Ħu l-għerq kwadrat ta' 3^{2}.
-7+\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Ikkombina -2\sqrt{10} u 3\sqrt{10} biex tikseb \sqrt{10}.
-7+\sqrt{10}+\left(2\sqrt{2}\right)^{2}-1
Ikkunsidra li \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ikkwadra 1.
-7+\sqrt{10}+2^{2}\left(\sqrt{2}\right)^{2}-1
Espandi \left(2\sqrt{2}\right)^{2}.
-7+\sqrt{10}+4\left(\sqrt{2}\right)^{2}-1
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
-7+\sqrt{10}+4\times 2-1
Il-kwadrat ta' \sqrt{2} huwa 2.
-7+\sqrt{10}+8-1
Immultiplika 4 u 2 biex tikseb 8.
-7+\sqrt{10}+7
Naqqas 1 minn 8 biex tikseb 7.
\sqrt{10}
Żid -7 u 7 biex tikseb 0.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}