Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Iffattura a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a+B u \left(B+a\right)^{2} huwa \left(B+a\right)^{2}. Immultiplika \frac{a^{2}}{a+B} b'\frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Billi \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} u \frac{a^{3}}{\left(B+a\right)^{2}} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Agħmel il-multiplikazzjonijiet fi a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Ikkombina termini simili f'a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Iffattura a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a+B u \left(B+a\right)\left(-B+a\right) huwa \left(B+a\right)\left(-B+a\right). Immultiplika \frac{a}{a+B} b'\frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Billi \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} u \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Agħmel il-multiplikazzjonijiet fi a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Ikkombina termini simili f'-aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Iddividi \frac{a^{2}B}{\left(B+a\right)^{2}} b'\frac{-aB}{\left(B+a\right)\left(-B+a\right)} billi timmultiplika \frac{a^{2}B}{\left(B+a\right)^{2}} bir-reċiproku ta' \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Annulla Ba\left(B+a\right) fin-numeratur u d-denominatur.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Uża l-propjetà distributtiva biex timmultiplika a b'-B+a.
\frac{-aB+a^{2}}{-B-a}
Biex issib l-oppost ta' B+a, sib l-oppost ta' kull terminu.
\frac{\frac{a^{2}}{a+B}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Iffattura a^{2}+2aB+B^{2}.
\frac{\frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}}-\frac{a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a+B u \left(B+a\right)^{2} huwa \left(B+a\right)^{2}. Immultiplika \frac{a^{2}}{a+B} b'\frac{B+a}{B+a}.
\frac{\frac{a^{2}\left(B+a\right)-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Billi \frac{a^{2}\left(B+a\right)}{\left(B+a\right)^{2}} u \frac{a^{3}}{\left(B+a\right)^{2}} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{a^{2}B+a^{3}-a^{3}}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Agħmel il-multiplikazzjonijiet fi a^{2}\left(B+a\right)-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{a^{2}-B^{2}}}
Ikkombina termini simili f'a^{2}B+a^{3}-a^{3}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a}{a+B}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Iffattura a^{2}-B^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)}-\frac{a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' a+B u \left(B+a\right)\left(-B+a\right) huwa \left(B+a\right)\left(-B+a\right). Immultiplika \frac{a}{a+B} b'\frac{-B+a}{-B+a}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{a\left(-B+a\right)-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Billi \frac{a\left(-B+a\right)}{\left(B+a\right)\left(-B+a\right)} u \frac{a^{2}}{\left(B+a\right)\left(-B+a\right)} għandhom l-istess denominatur, naqqashom billi tnaqqas in-numeraturi tagħhom.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB+a^{2}-a^{2}}{\left(B+a\right)\left(-B+a\right)}}
Agħmel il-multiplikazzjonijiet fi a\left(-B+a\right)-a^{2}.
\frac{\frac{a^{2}B}{\left(B+a\right)^{2}}}{\frac{-aB}{\left(B+a\right)\left(-B+a\right)}}
Ikkombina termini simili f'-aB+a^{2}-a^{2}.
\frac{a^{2}B\left(B+a\right)\left(-B+a\right)}{\left(B+a\right)^{2}\left(-1\right)aB}
Iddividi \frac{a^{2}B}{\left(B+a\right)^{2}} b'\frac{-aB}{\left(B+a\right)\left(-B+a\right)} billi timmultiplika \frac{a^{2}B}{\left(B+a\right)^{2}} bir-reċiproku ta' \frac{-aB}{\left(B+a\right)\left(-B+a\right)}.
\frac{a\left(-B+a\right)}{-\left(B+a\right)}
Annulla Ba\left(B+a\right) fin-numeratur u d-denominatur.
\frac{-aB+a^{2}}{-\left(B+a\right)}
Uża l-propjetà distributtiva biex timmultiplika a b'-B+a.
\frac{-aB+a^{2}}{-B-a}
Biex issib l-oppost ta' B+a, sib l-oppost ta' kull terminu.