Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Espandi
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{2}}{\sqrt{2}-18} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Ikkunsidra li \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Ikkwadra \sqrt{2}. Ikkwadra 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Naqqas 324 minn 2 biex tikseb -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Biex tgħolli \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Espandi \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Żid 2 u 324 biex tikseb 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Ikkalkula -322 bil-power ta' 2 u tikseb 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Iddividi 2\left(326+36\sqrt{2}\right) b'103684 biex tikseb\frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Uża l-propjetà distributtiva biex timmultiplika \frac{1}{51842} b'326+36\sqrt{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right)}\right)^{2}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{2}}{\sqrt{2}-18} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}+18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{\left(\sqrt{2}\right)^{2}-18^{2}}\right)^{2}
Ikkunsidra li \left(\sqrt{2}-18\right)\left(\sqrt{2}+18\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{2-324}\right)^{2}
Ikkwadra \sqrt{2}. Ikkwadra 18.
\left(\frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322}\right)^{2}
Naqqas 324 minn 2 biex tikseb -322.
\frac{\left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}}{\left(-322\right)^{2}}
Biex tgħolli \frac{\sqrt{2}\left(\sqrt{2}+18\right)}{-322} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{\left(\sqrt{2}\right)^{2}\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Espandi \left(\sqrt{2}\left(\sqrt{2}+18\right)\right)^{2}.
\frac{2\left(\sqrt{2}+18\right)^{2}}{\left(-322\right)^{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{2\left(\left(\sqrt{2}\right)^{2}+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\sqrt{2}+18\right)^{2}.
\frac{2\left(2+36\sqrt{2}+324\right)}{\left(-322\right)^{2}}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{2\left(326+36\sqrt{2}\right)}{\left(-322\right)^{2}}
Żid 2 u 324 biex tikseb 326.
\frac{2\left(326+36\sqrt{2}\right)}{103684}
Ikkalkula -322 bil-power ta' 2 u tikseb 103684.
\frac{1}{51842}\left(326+36\sqrt{2}\right)
Iddividi 2\left(326+36\sqrt{2}\right) b'103684 biex tikseb\frac{1}{51842}\left(326+36\sqrt{2}\right).
\frac{163}{25921}+\frac{18}{25921}\sqrt{2}
Uża l-propjetà distributtiva biex timmultiplika \frac{1}{51842} b'326+36\sqrt{2}.