Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. F
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

F\times 3\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Żid 2 u 1 biex tikseb 3.
F\times 3\left(4+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
F\times 3\times 5\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Żid 4 u 1 biex tikseb 5.
F\times 15\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Immultiplika 3 u 5 biex tikseb 15.
F\times 15\left(16+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Ikkalkula 2 bil-power ta' 4 u tikseb 16.
F\times 15\times 17\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Żid 16 u 1 biex tikseb 17.
F\times 255\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Immultiplika 15 u 17 biex tikseb 255.
F\times 255\left(256+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Ikkalkula 2 bil-power ta' 8 u tikseb 256.
F\times 255\times 257\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Żid 256 u 1 biex tikseb 257.
F\times 65535\left(2^{16}+1\right)\left(2^{32}+1\right)+1
Immultiplika 255 u 257 biex tikseb 65535.
F\times 65535\left(65536+1\right)\left(2^{32}+1\right)+1
Ikkalkula 2 bil-power ta' 16 u tikseb 65536.
F\times 65535\times 65537\left(2^{32}+1\right)+1
Żid 65536 u 1 biex tikseb 65537.
F\times 4294967295\left(2^{32}+1\right)+1
Immultiplika 65535 u 65537 biex tikseb 4294967295.
F\times 4294967295\left(4294967296+1\right)+1
Ikkalkula 2 bil-power ta' 32 u tikseb 4294967296.
F\times 4294967295\times 4294967297+1
Żid 4294967296 u 1 biex tikseb 4294967297.
F\times 18446744073709551615+1
Immultiplika 4294967295 u 4294967297 biex tikseb 18446744073709551615.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\left(2^{2}+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Żid 2 u 1 biex tikseb 3.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\left(4+1\right)\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 3\times 5\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Żid 4 u 1 biex tikseb 5.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\left(2^{4}+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Immultiplika 3 u 5 biex tikseb 15.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\left(16+1\right)\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Ikkalkula 2 bil-power ta' 4 u tikseb 16.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 15\times 17\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Żid 16 u 1 biex tikseb 17.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\left(2^{8}+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Immultiplika 15 u 17 biex tikseb 255.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\left(256+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Ikkalkula 2 bil-power ta' 8 u tikseb 256.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 255\times 257\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Żid 256 u 1 biex tikseb 257.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\left(2^{16}+1\right)\left(2^{32}+1\right)+1)
Immultiplika 255 u 257 biex tikseb 65535.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\left(65536+1\right)\left(2^{32}+1\right)+1)
Ikkalkula 2 bil-power ta' 16 u tikseb 65536.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 65535\times 65537\left(2^{32}+1\right)+1)
Żid 65536 u 1 biex tikseb 65537.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\left(2^{32}+1\right)+1)
Immultiplika 65535 u 65537 biex tikseb 4294967295.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\left(4294967296+1\right)+1)
Ikkalkula 2 bil-power ta' 32 u tikseb 4294967296.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 4294967295\times 4294967297+1)
Żid 4294967296 u 1 biex tikseb 4294967297.
\frac{\mathrm{d}}{\mathrm{d}F}(F\times 18446744073709551615+1)
Immultiplika 4294967295 u 4294967297 biex tikseb 18446744073709551615.
18446744073709551615F^{1-1}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
18446744073709551615F^{0}
Naqqas 1 minn 1.
18446744073709551615\times 1
Għal kwalunkwe terminu t ħlief 0, t^{0}=1.
18446744073709551615
Għal kwalunkwe terminu t, t\times 1=t u 1t=t.