Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x^{2}-x+1=0
Biex issolvi l-inugwaljanza, iffatura n-naħa tax-xellug. Polynomial kwadratika tista' tiġi fatturata billi tuża t-trasformazzjoni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), fejn x_{1} u x_{2} huma s-soluzzjonijiet tal-ekwazzjoni kwadratika ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 1}}{2}
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti billi tuża l-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sostitut 1 għal a, -1 għal b, u 1 għal c fil-formula kwadratika.
x=\frac{1±\sqrt{-3}}{2}
Agħmel il-kalkoli.
0^{2}-0+1=1
Billi l-għerq kwadru ta' numru negattiv mhux iddefinit fil-qasam reali, m'hemm ebda soluzzjoni. L-espressjoni x^{2}-x+1 għandha l-istess sinjal għal kwalunkwe x. Biex tiddetermina s-sinjal, Ikkalkula l-valur tal-espressjoni għal x=0.
x\in \mathrm{R}
Il-valur tal-espressjoni x^{2}-x+1 huwa dejjem pożittiv. L-inugwaljanza żżomm għal x\in \mathrm{R}.