Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x^{2}+2x-3+x^{2}>0
Żid x^{2} maż-żewġ naħat.
2x^{2}+2x-3>0
Ikkombina x^{2} u x^{2} biex tikseb 2x^{2}.
2x^{2}+2x-3=0
Biex issolvi l-inugwaljanza, iffatura n-naħa tax-xellug. Polynomial kwadratika tista' tiġi fatturata billi tuża t-trasformazzjoni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), fejn x_{1} u x_{2} huma s-soluzzjonijiet tal-ekwazzjoni kwadratika ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-3\right)}}{2\times 2}
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti billi tuża l-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sostitut 2 għal a, 2 għal b, u -3 għal c fil-formula kwadratika.
x=\frac{-2±2\sqrt{7}}{4}
Agħmel il-kalkoli.
x=\frac{\sqrt{7}-1}{2} x=\frac{-\sqrt{7}-1}{2}
Solvi l-ekwazzjoni x=\frac{-2±2\sqrt{7}}{4} meta ± hija plus u meta ± hija minus.
2\left(x-\frac{\sqrt{7}-1}{2}\right)\left(x-\frac{-\sqrt{7}-1}{2}\right)>0
Erġa' Ikteb l-inugwaljanza billi tuża l-soluzzjonijiet miksuba.
x-\frac{\sqrt{7}-1}{2}<0 x-\frac{-\sqrt{7}-1}{2}<0
Biex il-prodott ikun pożittiv, x-\frac{\sqrt{7}-1}{2} u x-\frac{-\sqrt{7}-1}{2} għandhom ikunu t-tnejn negattivi jew it-tnejn pożittivi. Ikkunsidra l-każ meta x-\frac{\sqrt{7}-1}{2} u x-\frac{-\sqrt{7}-1}{2} huma t-tnejn negattivi.
x<\frac{-\sqrt{7}-1}{2}
Is-soluzzjoni li tissodisfa ż-żewġ inugwaljanzi hija x<\frac{-\sqrt{7}-1}{2}.
x-\frac{-\sqrt{7}-1}{2}>0 x-\frac{\sqrt{7}-1}{2}>0
Ikkunsidra l-każ meta x-\frac{\sqrt{7}-1}{2} u x-\frac{-\sqrt{7}-1}{2} huma t-tnejn pożittivi.
x>\frac{\sqrt{7}-1}{2}
Is-soluzzjoni li tissodisfa ż-żewġ inugwaljanzi hija x>\frac{\sqrt{7}-1}{2}.
x<\frac{-\sqrt{7}-1}{2}\text{; }x>\frac{\sqrt{7}-1}{2}
Is-soluzzjoni finali hija l-unjoni tas-soluzzjonijiet miksuba.