Solvi għal x
x=\frac{\sqrt{12813994352897}-1}{100109330882}\approx 0.000035758
x=\frac{-\sqrt{12813994352897}-1}{100109330882}\approx -0.000035758
Graff
Sehem
Ikkupjat fuq il-klibbord
\left(-x+64\right)\times 473^{-4}=x^{2}
Il-varjabbli x ma jistax ikun ugwali għal 64 billi d-diviżjoni b'żero mhux iddefinit. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'-x+64.
\left(-x+64\right)\times \frac{1}{50054665441}=x^{2}
Ikkalkula 473 bil-power ta' -4 u tikseb \frac{1}{50054665441}.
-\frac{1}{50054665441}x+\frac{64}{50054665441}=x^{2}
Uża l-propjetà distributtiva biex timmultiplika -x+64 b'\frac{1}{50054665441}.
-\frac{1}{50054665441}x+\frac{64}{50054665441}-x^{2}=0
Naqqas x^{2} miż-żewġ naħat.
-x^{2}-\frac{1}{50054665441}x+\frac{64}{50054665441}=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\left(-\frac{1}{50054665441}\right)^{2}-4\left(-1\right)\times \frac{64}{50054665441}}}{2\left(-1\right)}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi -1 għal a, -\frac{1}{50054665441} għal b, u \frac{64}{50054665441} għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\frac{1}{2505469532410439724481}-4\left(-1\right)\times \frac{64}{50054665441}}}{2\left(-1\right)}
Ikkwadra -\frac{1}{50054665441} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\frac{1}{2505469532410439724481}+4\times \frac{64}{50054665441}}}{2\left(-1\right)}
Immultiplika -4 b'-1.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\frac{1}{2505469532410439724481}+\frac{256}{50054665441}}}{2\left(-1\right)}
Immultiplika 4 b'\frac{64}{50054665441}.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\sqrt{\frac{12813994352897}{2505469532410439724481}}}{2\left(-1\right)}
Żid \frac{1}{2505469532410439724481} ma' \frac{256}{50054665441} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
x=\frac{-\left(-\frac{1}{50054665441}\right)±\frac{\sqrt{12813994352897}}{50054665441}}{2\left(-1\right)}
Ħu l-għerq kwadrat ta' \frac{12813994352897}{2505469532410439724481}.
x=\frac{\frac{1}{50054665441}±\frac{\sqrt{12813994352897}}{50054665441}}{2\left(-1\right)}
L-oppost ta' -\frac{1}{50054665441} huwa \frac{1}{50054665441}.
x=\frac{\frac{1}{50054665441}±\frac{\sqrt{12813994352897}}{50054665441}}{-2}
Immultiplika 2 b'-1.
x=\frac{\sqrt{12813994352897}+1}{-2\times 50054665441}
Issa solvi l-ekwazzjoni x=\frac{\frac{1}{50054665441}±\frac{\sqrt{12813994352897}}{50054665441}}{-2} fejn ± hija plus. Żid \frac{1}{50054665441} ma' \frac{\sqrt{12813994352897}}{50054665441}.
x=\frac{-\sqrt{12813994352897}-1}{100109330882}
Iddividi \frac{1+\sqrt{12813994352897}}{50054665441} b'-2.
x=\frac{1-\sqrt{12813994352897}}{-2\times 50054665441}
Issa solvi l-ekwazzjoni x=\frac{\frac{1}{50054665441}±\frac{\sqrt{12813994352897}}{50054665441}}{-2} fejn ± hija minus. Naqqas \frac{\sqrt{12813994352897}}{50054665441} minn \frac{1}{50054665441}.
x=\frac{\sqrt{12813994352897}-1}{100109330882}
Iddividi \frac{1-\sqrt{12813994352897}}{50054665441} b'-2.
x=\frac{-\sqrt{12813994352897}-1}{100109330882} x=\frac{\sqrt{12813994352897}-1}{100109330882}
L-ekwazzjoni issa solvuta.
\left(-x+64\right)\times 473^{-4}=x^{2}
Il-varjabbli x ma jistax ikun ugwali għal 64 billi d-diviżjoni b'żero mhux iddefinit. Immultiplika ż-żewġ naħat tal-ekwazzjoni b'-x+64.
\left(-x+64\right)\times \frac{1}{50054665441}=x^{2}
Ikkalkula 473 bil-power ta' -4 u tikseb \frac{1}{50054665441}.
-\frac{1}{50054665441}x+\frac{64}{50054665441}=x^{2}
Uża l-propjetà distributtiva biex timmultiplika -x+64 b'\frac{1}{50054665441}.
-\frac{1}{50054665441}x+\frac{64}{50054665441}-x^{2}=0
Naqqas x^{2} miż-żewġ naħat.
-\frac{1}{50054665441}x-x^{2}=-\frac{64}{50054665441}
Naqqas \frac{64}{50054665441} miż-żewġ naħat. Xi ħaġa mnaqqsa minn żero tagħti numru negattiv.
-x^{2}-\frac{1}{50054665441}x=-\frac{64}{50054665441}
Ekwazzjonijiet kwadratiċi bħal din jistgħu jiġu solvuti billi tikkompleta l-kwadrat. Sabiex tikkompleta l-kwadrat, l-ekwazzjoni l-ewwel trid tkun fil-forma x^{2}+bx=c.
\frac{-x^{2}-\frac{1}{50054665441}x}{-1}=-\frac{\frac{64}{50054665441}}{-1}
Iddividi ż-żewġ naħat b'-1.
x^{2}+\left(-\frac{\frac{1}{50054665441}}{-1}\right)x=-\frac{\frac{64}{50054665441}}{-1}
Meta tiddividi b'-1 titneħħa l-multiplikazzjoni b'-1.
x^{2}+\frac{1}{50054665441}x=-\frac{\frac{64}{50054665441}}{-1}
Iddividi -\frac{1}{50054665441} b'-1.
x^{2}+\frac{1}{50054665441}x=\frac{64}{50054665441}
Iddividi -\frac{64}{50054665441} b'-1.
x^{2}+\frac{1}{50054665441}x+\left(\frac{1}{100109330882}\right)^{2}=\frac{64}{50054665441}+\left(\frac{1}{100109330882}\right)^{2}
Iddividi \frac{1}{50054665441}, il-koeffiċjent tat-terminu x, b'2 biex tikseb \frac{1}{100109330882}. Imbagħad żid il-kwadru ta' \frac{1}{100109330882} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+\frac{1}{50054665441}x+\frac{1}{10021878129641758897924}=\frac{64}{50054665441}+\frac{1}{10021878129641758897924}
Ikkwadra \frac{1}{100109330882} billi tikkwadra kemm in-numeratur u d-denominatur tal-frazzjoni.
x^{2}+\frac{1}{50054665441}x+\frac{1}{10021878129641758897924}=\frac{12813994352897}{10021878129641758897924}
Żid \frac{64}{50054665441} ma' \frac{1}{10021878129641758897924} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
\left(x+\frac{1}{100109330882}\right)^{2}=\frac{12813994352897}{10021878129641758897924}
Fattur x^{2}+\frac{1}{50054665441}x+\frac{1}{10021878129641758897924}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{100109330882}\right)^{2}}=\sqrt{\frac{12813994352897}{10021878129641758897924}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x+\frac{1}{100109330882}=\frac{\sqrt{12813994352897}}{100109330882} x+\frac{1}{100109330882}=-\frac{\sqrt{12813994352897}}{100109330882}
Issimplifika.
x=\frac{\sqrt{12813994352897}-1}{100109330882} x=\frac{-\sqrt{12813994352897}-1}{100109330882}
Naqqas \frac{1}{100109330882} miż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}