Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-1\right)^{2}.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Ikkombina x^{2} u x^{2} biex tikseb 2x^{2}.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Ikkombina -4x u -2x biex tikseb -6x.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Żid 4 u 1 biex tikseb 5.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Ikkombina 2x^{2} u x^{2} biex tikseb 3x^{2}.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+1\right)^{2}.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+2\right)^{2}.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
Ikkombina x^{2} u x^{2} biex tikseb 2x^{2}.
3x^{2}-6x+5=2x^{2}+6x+1+4
Ikkombina 2x u 4x biex tikseb 6x.
3x^{2}-6x+5=2x^{2}+6x+5
Żid 1 u 4 biex tikseb 5.
3x^{2}-6x+5-2x^{2}=6x+5
Naqqas 2x^{2} miż-żewġ naħat.
x^{2}-6x+5=6x+5
Ikkombina 3x^{2} u -2x^{2} biex tikseb x^{2}.
x^{2}-6x+5-6x=5
Naqqas 6x miż-żewġ naħat.
x^{2}-12x+5=5
Ikkombina -6x u -6x biex tikseb -12x.
x^{2}-12x+5-5=0
Naqqas 5 miż-żewġ naħat.
x^{2}-12x=0
Naqqas 5 minn 5 biex tikseb 0.
x\left(x-12\right)=0
Iffattura 'l barra x.
x=0 x=12
Biex issib soluzzjonijiet tal-ekwazzjoni, solvi x=0 u x-12=0.
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-1\right)^{2}.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Ikkombina x^{2} u x^{2} biex tikseb 2x^{2}.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Ikkombina -4x u -2x biex tikseb -6x.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Żid 4 u 1 biex tikseb 5.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Ikkombina 2x^{2} u x^{2} biex tikseb 3x^{2}.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+1\right)^{2}.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+2\right)^{2}.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
Ikkombina x^{2} u x^{2} biex tikseb 2x^{2}.
3x^{2}-6x+5=2x^{2}+6x+1+4
Ikkombina 2x u 4x biex tikseb 6x.
3x^{2}-6x+5=2x^{2}+6x+5
Żid 1 u 4 biex tikseb 5.
3x^{2}-6x+5-2x^{2}=6x+5
Naqqas 2x^{2} miż-żewġ naħat.
x^{2}-6x+5=6x+5
Ikkombina 3x^{2} u -2x^{2} biex tikseb x^{2}.
x^{2}-6x+5-6x=5
Naqqas 6x miż-żewġ naħat.
x^{2}-12x+5=5
Ikkombina -6x u -6x biex tikseb -12x.
x^{2}-12x+5-5=0
Naqqas 5 miż-żewġ naħat.
x^{2}-12x=0
Naqqas 5 minn 5 biex tikseb 0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 1 għal a, -12 għal b, u 0 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±12}{2}
Ħu l-għerq kwadrat ta' \left(-12\right)^{2}.
x=\frac{12±12}{2}
L-oppost ta' -12 huwa 12.
x=\frac{24}{2}
Issa solvi l-ekwazzjoni x=\frac{12±12}{2} fejn ± hija plus. Żid 12 ma' 12.
x=12
Iddividi 24 b'2.
x=\frac{0}{2}
Issa solvi l-ekwazzjoni x=\frac{12±12}{2} fejn ± hija minus. Naqqas 12 minn 12.
x=0
Iddividi 0 b'2.
x=12 x=0
L-ekwazzjoni issa solvuta.
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-2\right)^{2}.
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Uża teorema binomjali \left(a-b\right)^{2}=a^{2}-2ab+b^{2} biex tespandi \left(x-1\right)^{2}.
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Ikkombina x^{2} u x^{2} biex tikseb 2x^{2}.
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Ikkombina -4x u -2x biex tikseb -6x.
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Żid 4 u 1 biex tikseb 5.
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
Ikkombina 2x^{2} u x^{2} biex tikseb 3x^{2}.
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+1\right)^{2}.
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(x+2\right)^{2}.
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
Ikkombina x^{2} u x^{2} biex tikseb 2x^{2}.
3x^{2}-6x+5=2x^{2}+6x+1+4
Ikkombina 2x u 4x biex tikseb 6x.
3x^{2}-6x+5=2x^{2}+6x+5
Żid 1 u 4 biex tikseb 5.
3x^{2}-6x+5-2x^{2}=6x+5
Naqqas 2x^{2} miż-żewġ naħat.
x^{2}-6x+5=6x+5
Ikkombina 3x^{2} u -2x^{2} biex tikseb x^{2}.
x^{2}-6x+5-6x=5
Naqqas 6x miż-żewġ naħat.
x^{2}-12x+5=5
Ikkombina -6x u -6x biex tikseb -12x.
x^{2}-12x+5-5=0
Naqqas 5 miż-żewġ naħat.
x^{2}-12x=0
Naqqas 5 minn 5 biex tikseb 0.
x^{2}-12x+\left(-6\right)^{2}=\left(-6\right)^{2}
Iddividi -12, il-koeffiċjent tat-terminu x, b'2 biex tikseb -6. Imbagħad żid il-kwadru ta' -6 maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}-12x+36=36
Ikkwadra -6.
\left(x-6\right)^{2}=36
Fattur x^{2}-12x+36. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{36}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-6=6 x-6=-6
Issimplifika.
x=12 x=0
Żid 6 maż-żewġ naħat tal-ekwazzjoni.