Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\left(x^{2}\right)^{2}-0
Xi ħaġa plus żero jirriżulta f'dan in-numru stess.
x^{4}-0
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
2\left(x^{2}\right)^{2-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})
Jekk F hija l-kompożizzjoni ta' żewġ funzjonijiet differenzjabbli f\left(u\right) u u=g\left(x\right), jiġifieri, jekk F\left(x\right)=f\left(g\left(x\right)\right), mela d-derivattiv ta' F huwa d-derivattiv ta' f fir-rigward ta' u immultiplikat bid-derivattiv ta' g fir-rigward ta' x, jiġifieri, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
2\left(x^{2}\right)^{1}\times 2x^{2-1}
Id-derivattiva ta’ polynomial hija s-somma tad-derivattivi tat-termini tagħha. Id-derivattiva ta’ terminu kostanti hija 0. Id-derivattiva ta’ ax^{n} hijanax^{n-1}.
4x^{1}\left(x^{2}\right)^{1}
Issimplifika.
4xx^{2}
Għal kwalunkwe terminu t, t^{1}=t.