Evalwa
2
Sehem
Ikkupjat fuq il-klibbord
\left(\frac{1}{2}\right)^{2}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Ikseb il-valur ta’ \sin(30) mit-tabella tal-valuri trigonometriċi.
\frac{1}{4}\left(\cos(45)\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Ikkalkula \frac{1}{2} bil-power ta' 2 u tikseb \frac{1}{4}.
\frac{1}{4}\times \left(\frac{\sqrt{2}}{2}\right)^{2}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Ikseb il-valur ta’ \cos(45) mit-tabella tal-valuri trigonometriċi.
\frac{1}{4}\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Biex tgħolli \frac{\sqrt{2}}{2} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\left(\tan(30)\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Immultiplika \frac{1}{4} b'\frac{\left(\sqrt{2}\right)^{2}}{2^{2}} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \left(\frac{\sqrt{3}}{3}\right)^{2}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Ikseb il-valur ta’ \tan(30) mit-tabella tal-valuri trigonometriċi.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Biex tgħolli \frac{\sqrt{3}}{3} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\left(\sin(90)\right)^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Esprimi 4\times \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} bħala frazzjoni waħda.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1^{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Ikseb il-valur ta’ \sin(90) mit-tabella tal-valuri trigonometriċi.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}\times 1-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Ikkalkula 1 bil-power ta' 2 u tikseb 1.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Immultiplika \frac{1}{2} u 1 biex tikseb \frac{1}{2}.
\frac{9\left(\sqrt{2}\right)^{2}}{144}+\frac{16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' 4\times 2^{2} u 3^{2} huwa 144. Immultiplika \frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}} b'\frac{9}{9}. Immultiplika \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} b'\frac{16}{16}.
\frac{9\left(\sqrt{2}\right)^{2}+16\times 4\left(\sqrt{3}\right)^{2}}{144}+\frac{1}{2}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Billi \frac{9\left(\sqrt{2}\right)^{2}}{144} u \frac{16\times 4\left(\sqrt{3}\right)^{2}}{144} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\left(\sqrt{2}\right)^{2}}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}+\frac{8}{16}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' 4\times 2^{2} u 2 huwa 16. Immultiplika \frac{1}{2} b'\frac{8}{8}.
\frac{\left(\sqrt{2}\right)^{2}+8}{16}+\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Billi \frac{\left(\sqrt{2}\right)^{2}}{16} u \frac{8}{16} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}}{18}+\frac{9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. L-inqas multiplu komuni ta' 3^{2} u 2 huwa 18. Immultiplika \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}} b'\frac{2}{2}. Immultiplika \frac{1}{2} b'\frac{9}{9}.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\left(\cos(90)\right)^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Billi \frac{2\times 4\left(\sqrt{3}\right)^{2}}{18} u \frac{9}{18} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0^{2}+\frac{1}{24}\left(\cos(0)\right)^{2}
Ikseb il-valur ta’ \cos(90) mit-tabella tal-valuri trigonometriċi.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-2\times 0+\frac{1}{24}\left(\cos(0)\right)^{2}
Ikkalkula 0 bil-power ta' 2 u tikseb 0.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\left(\cos(0)\right)^{2}
Immultiplika 2 u 0 biex tikseb 0.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1^{2}
Ikseb il-valur ta’ \cos(0) mit-tabella tal-valuri trigonometriċi.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}\times 1
Ikkalkula 1 bil-power ta' 2 u tikseb 1.
\frac{\left(\sqrt{2}\right)^{2}}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Immultiplika \frac{1}{24} u 1 biex tikseb \frac{1}{24}.
\frac{2}{4\times 2^{2}}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{2}{4\times 4}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{2}{16}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Immultiplika 4 u 4 biex tikseb 16.
\frac{1}{8}+\frac{2\times 4\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Naqqas il-frazzjoni \frac{2}{16} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
\frac{1}{8}+\frac{8\left(\sqrt{3}\right)^{2}+9}{18}-0+\frac{1}{24}
Immultiplika 2 u 4 biex tikseb 8.
\frac{1}{8}+\frac{8\times 3+9}{18}-0+\frac{1}{24}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{1}{8}+\frac{24+9}{18}-0+\frac{1}{24}
Immultiplika 8 u 3 biex tikseb 24.
\frac{1}{8}+\frac{33}{18}-0+\frac{1}{24}
Żid 24 u 9 biex tikseb 33.
\frac{1}{8}+\frac{11}{6}-0+\frac{1}{24}
Naqqas il-frazzjoni \frac{33}{18} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 3.
\frac{47}{24}-0+\frac{1}{24}
Żid \frac{1}{8} u \frac{11}{6} biex tikseb \frac{47}{24}.
\frac{47}{24}+\frac{1}{24}
Naqqas 0 minn \frac{47}{24} biex tikseb \frac{47}{24}.
2
Żid \frac{47}{24} u \frac{1}{24} biex tikseb 2.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}