Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Ikkalkula \frac{10}{3} bil-power ta' 2 u tikseb \frac{100}{9}.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Biex tgħolli \frac{2\sqrt{73}}{3} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Espandi 3^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Billi \frac{100}{9} u \frac{\left(2\sqrt{73}\right)^{2}}{9} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Iffattura 52=2^{2}\times 13. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 13} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{13}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Biex tgħolli \frac{2\sqrt{13}}{3} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Esprimi 2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} bħala frazzjoni waħda.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 2x^{2} b'\frac{3^{2}}{3^{2}}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Billi \frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} u \frac{2x^{2}\times 3^{2}}{3^{2}} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Espandi \left(2\sqrt{73}\right)^{2}.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Il-kwadrat ta' \sqrt{73} huwa 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Immultiplika 4 u 73 biex tikseb 292.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Żid 100 u 292 biex tikseb 392.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Espandi \left(2\sqrt{13}\right)^{2}.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
Il-kwadrat ta' \sqrt{13} huwa 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
Immultiplika 4 u 13 biex tikseb 52.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
Immultiplika 2 u 52 biex tikseb 104.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
Ikkalkula 3 bil-power ta' 2 u tikseb 9.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
Immultiplika 2 u 9 biex tikseb 18.
\frac{392}{9}=\frac{104+18x^{2}}{9}
Ikkalkula 3 bil-power ta' 2 u tikseb 9.
\frac{392}{9}=\frac{104}{9}+2x^{2}
Iddividi kull terminu ta' 104+18x^{2} b'9 biex tikseb\frac{104}{9}+2x^{2}.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\frac{104}{9}+2x^{2}-\frac{392}{9}=0
Naqqas \frac{392}{9} miż-żewġ naħat.
-32+2x^{2}=0
Naqqas \frac{392}{9} minn \frac{104}{9} biex tikseb -32.
-16+x^{2}=0
Iddividi ż-żewġ naħat b'2.
\left(x-4\right)\left(x+4\right)=0
Ikkunsidra li -16+x^{2}. Erġa' ikteb -16+x^{2} bħala x^{2}-4^{2}. Id-differenza tal-kwadrati tista' tiġi fatturata billi tuża r-regola: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=4 x=-4
Biex issib soluzzjonijiet tal-ekwazzjoni, solvi x-4=0 u x+4=0.
\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Ikkalkula \frac{10}{3} bil-power ta' 2 u tikseb \frac{100}{9}.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Biex tgħolli \frac{2\sqrt{73}}{3} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Espandi 3^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Billi \frac{100}{9} u \frac{\left(2\sqrt{73}\right)^{2}}{9} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Iffattura 52=2^{2}\times 13. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 13} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{13}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Biex tgħolli \frac{2\sqrt{13}}{3} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Esprimi 2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} bħala frazzjoni waħda.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 2x^{2} b'\frac{3^{2}}{3^{2}}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Billi \frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} u \frac{2x^{2}\times 3^{2}}{3^{2}} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Espandi \left(2\sqrt{73}\right)^{2}.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Il-kwadrat ta' \sqrt{73} huwa 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Immultiplika 4 u 73 biex tikseb 292.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Żid 100 u 292 biex tikseb 392.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Espandi \left(2\sqrt{13}\right)^{2}.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
Il-kwadrat ta' \sqrt{13} huwa 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
Immultiplika 4 u 13 biex tikseb 52.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
Immultiplika 2 u 52 biex tikseb 104.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
Ikkalkula 3 bil-power ta' 2 u tikseb 9.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
Immultiplika 2 u 9 biex tikseb 18.
\frac{392}{9}=\frac{104+18x^{2}}{9}
Ikkalkula 3 bil-power ta' 2 u tikseb 9.
\frac{392}{9}=\frac{104}{9}+2x^{2}
Iddividi kull terminu ta' 104+18x^{2} b'9 biex tikseb\frac{104}{9}+2x^{2}.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
2x^{2}=\frac{392}{9}-\frac{104}{9}
Naqqas \frac{104}{9} miż-żewġ naħat.
2x^{2}=32
Naqqas \frac{104}{9} minn \frac{392}{9} biex tikseb 32.
x^{2}=\frac{32}{2}
Iddividi ż-żewġ naħat b'2.
x^{2}=16
Iddividi 32 b'2 biex tikseb16.
x=4 x=-4
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
\frac{100}{9}+\left(\frac{2\sqrt{73}}{3}\right)^{2}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Ikkalkula \frac{10}{3} bil-power ta' 2 u tikseb \frac{100}{9}.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{3^{2}}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Biex tgħolli \frac{2\sqrt{73}}{3} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{100}{9}+\frac{\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Espandi 3^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{\sqrt{52}}{3}\right)^{2}+2x^{2}
Billi \frac{100}{9} u \frac{\left(2\sqrt{73}\right)^{2}}{9} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \left(\frac{2\sqrt{13}}{3}\right)^{2}+2x^{2}
Iffattura 52=2^{2}\times 13. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{2^{2}\times 13} bħala l-prodott tal-għeruq kwadrati \sqrt{2^{2}}\sqrt{13}. Ħu l-għerq kwadrat ta' 2^{2}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Biex tgħolli \frac{2\sqrt{13}}{3} għal qawwa, għolli kemm in-numeratur u d-denominatur għall-qawwa u mbagħad iddividi.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+2x^{2}
Esprimi 2\times \frac{\left(2\sqrt{13}\right)^{2}}{3^{2}} bħala frazzjoni waħda.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}}+\frac{2x^{2}\times 3^{2}}{3^{2}}
Biex iżżid jew tnaqqas l-espressjonijiet, espandihom biex id-denominaturi tagħhom ikunu l-istess. Immultiplika 2x^{2} b'\frac{3^{2}}{3^{2}}.
\frac{100+\left(2\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Billi \frac{2\times \left(2\sqrt{13}\right)^{2}}{3^{2}} u \frac{2x^{2}\times 3^{2}}{3^{2}} għandhom l-istess denominatur, żidhom billi żżid in-numeraturi tagħhom.
\frac{100+2^{2}\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Espandi \left(2\sqrt{73}\right)^{2}.
\frac{100+4\left(\sqrt{73}\right)^{2}}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{100+4\times 73}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Il-kwadrat ta' \sqrt{73} huwa 73.
\frac{100+292}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Immultiplika 4 u 73 biex tikseb 292.
\frac{392}{9}=\frac{2\times \left(2\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Żid 100 u 292 biex tikseb 392.
\frac{392}{9}=\frac{2\times 2^{2}\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Espandi \left(2\sqrt{13}\right)^{2}.
\frac{392}{9}=\frac{2\times 4\left(\sqrt{13}\right)^{2}+2x^{2}\times 3^{2}}{3^{2}}
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{392}{9}=\frac{2\times 4\times 13+2x^{2}\times 3^{2}}{3^{2}}
Il-kwadrat ta' \sqrt{13} huwa 13.
\frac{392}{9}=\frac{2\times 52+2x^{2}\times 3^{2}}{3^{2}}
Immultiplika 4 u 13 biex tikseb 52.
\frac{392}{9}=\frac{104+2x^{2}\times 3^{2}}{3^{2}}
Immultiplika 2 u 52 biex tikseb 104.
\frac{392}{9}=\frac{104+2x^{2}\times 9}{3^{2}}
Ikkalkula 3 bil-power ta' 2 u tikseb 9.
\frac{392}{9}=\frac{104+18x^{2}}{3^{2}}
Immultiplika 2 u 9 biex tikseb 18.
\frac{392}{9}=\frac{104+18x^{2}}{9}
Ikkalkula 3 bil-power ta' 2 u tikseb 9.
\frac{392}{9}=\frac{104}{9}+2x^{2}
Iddividi kull terminu ta' 104+18x^{2} b'9 biex tikseb\frac{104}{9}+2x^{2}.
\frac{104}{9}+2x^{2}=\frac{392}{9}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\frac{104}{9}+2x^{2}-\frac{392}{9}=0
Naqqas \frac{392}{9} miż-żewġ naħat.
-32+2x^{2}=0
Naqqas \frac{392}{9} minn \frac{104}{9} biex tikseb -32.
2x^{2}-32=0
Ekwazzjonijiet kwadratiċi bħal din, b'terminu x^{2} term iżda b'ebda terminu x, xorta jistgħu jiġu solvuti billi tuża l-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ladarba jitqiegħdu fil-forma standard: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-32\right)}}{2\times 2}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi 2 għal a, 0 għal b, u -32 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-32\right)}}{2\times 2}
Ikkwadra 0.
x=\frac{0±\sqrt{-8\left(-32\right)}}{2\times 2}
Immultiplika -4 b'2.
x=\frac{0±\sqrt{256}}{2\times 2}
Immultiplika -8 b'-32.
x=\frac{0±16}{2\times 2}
Ħu l-għerq kwadrat ta' 256.
x=\frac{0±16}{4}
Immultiplika 2 b'2.
x=4
Issa solvi l-ekwazzjoni x=\frac{0±16}{4} fejn ± hija plus. Iddividi 16 b'4.
x=-4
Issa solvi l-ekwazzjoni x=\frac{0±16}{4} fejn ± hija minus. Iddividi -16 b'4.
x=4 x=-4
L-ekwazzjoni issa solvuta.