Aqbeż għall-kontenut ewlieni
Iddifferenzja w.r.t. α
Tick mark Image
Evalwa
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\frac{\mathrm{d}}{\mathrm{d}\alpha }(\frac{\sin(\alpha )}{\cos(\alpha )})
Uża d-definizzjoni ta' tangent.
\frac{\cos(\alpha )\frac{\mathrm{d}}{\mathrm{d}\alpha }(\sin(\alpha ))-\sin(\alpha )\frac{\mathrm{d}}{\mathrm{d}\alpha }(\cos(\alpha ))}{\left(\cos(\alpha )\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\cos(\alpha )\cos(\alpha )-\sin(\alpha )\left(-\sin(\alpha )\right)}{\left(\cos(\alpha )\right)^{2}}
Id-derivattiv ta' sin(\alpha ) hu cos(\alpha ), u d-derivattiv ta' cos(\alpha ) huwa −sin(\alpha ).
\frac{\left(\cos(\alpha )\right)^{2}+\left(\sin(\alpha )\right)^{2}}{\left(\cos(\alpha )\right)^{2}}
Issimplifika.
\frac{1}{\left(\cos(\alpha )\right)^{2}}
Uża l-Pythagorean Identity.
\left(\sec(\alpha )\right)^{2}
Uża d-definizzjoni ta' secant.