Iddifferenzja w.r.t. α
\frac{1}{\left(\cos(\alpha )\right)^{2}}
Evalwa
\tan(\alpha )
Sehem
Ikkupjat fuq il-klibbord
\frac{\mathrm{d}}{\mathrm{d}\alpha }(\frac{\sin(\alpha )}{\cos(\alpha )})
Uża d-definizzjoni ta' tangent.
\frac{\cos(\alpha )\frac{\mathrm{d}}{\mathrm{d}\alpha }(\sin(\alpha ))-\sin(\alpha )\frac{\mathrm{d}}{\mathrm{d}\alpha }(\cos(\alpha ))}{\left(\cos(\alpha )\right)^{2}}
Għal kwalunkwe żewġ funzjonijiet differenzjabbli, id-derivattiv tal-kwozjent ta' żewġ funzjonijiet huwa d-denominatur immultiplikat bid-derivattiv tan-numeratur minus in-numeratur immultiplikat bid-derivattiv tad-denominatur, kollha diviżi bid-denominatur kwadrat.
\frac{\cos(\alpha )\cos(\alpha )-\sin(\alpha )\left(-\sin(\alpha )\right)}{\left(\cos(\alpha )\right)^{2}}
Id-derivattiv ta' sin(\alpha ) hu cos(\alpha ), u d-derivattiv ta' cos(\alpha ) huwa −sin(\alpha ).
\frac{\left(\cos(\alpha )\right)^{2}+\left(\sin(\alpha )\right)^{2}}{\left(\cos(\alpha )\right)^{2}}
Issimplifika.
\frac{1}{\left(\cos(\alpha )\right)^{2}}
Uża l-Pythagorean Identity.
\left(\sec(\alpha )\right)^{2}
Uża d-definizzjoni ta' secant.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}