Solvi għal x (complex solution)
x=\frac{\sqrt{21413691138}+i\sqrt{383727960\sqrt{4578}-21413691138}}{9156}\approx 15.982325934+7.366910212i
x=\frac{-i\sqrt{383727960\sqrt{4578}-21413691138}+\sqrt{21413691138}}{9156}\approx 15.982325934-7.366910212i
Graff
Sehem
Ikkupjat fuq il-klibbord
\sqrt{4578}x^{2}-\sqrt{4677521}x+31478-10523=0
Naqqas 10523 miż-żewġ naħat.
\sqrt{4578}x^{2}-\sqrt{4677521}x+20955=0
Naqqas 10523 minn 31478 biex tikseb 20955.
\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x+20955=0
L-ekwazzjonijiet kollha tal-formola ax^{2}+bx+c=0 jistgħu jiġu solvuti permezz tal-formula kwadratika: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Il-formula kwadratika tagħti żewġ soluzzjonijiet, waħda meta ± hija addizzjoni u waħda meta hija tnaqqis.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{\left(-\sqrt{4677521}\right)^{2}-4\sqrt{4578}\times 20955}}{2\sqrt{4578}}
Din l-ekwazzjoni hija fil-forma standard: ax^{2}+bx+c=0. Issostitwixxi \sqrt{4578} għal a, -\sqrt{4677521} għal b, u 20955 għal c fil-formula kwadratika, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521-4\sqrt{4578}\times 20955}}{2\sqrt{4578}}
Ikkwadra -\sqrt{4677521}.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521+\left(-4\sqrt{4578}\right)\times 20955}}{2\sqrt{4578}}
Immultiplika -4 b'\sqrt{4578}.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521-83820\sqrt{4578}}}{2\sqrt{4578}}
Immultiplika -4\sqrt{4578} b'20955.
x=\frac{-\left(-\sqrt{4677521}\right)±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}}
Ħu l-għerq kwadrat ta' 4677521-83820\sqrt{4578}.
x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}}
L-oppost ta' -\sqrt{4677521} huwa \sqrt{4677521}.
x=\frac{\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}}{2\sqrt{4578}}
Issa solvi l-ekwazzjoni x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}} fejn ± hija plus. Żid \sqrt{4677521} ma' i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}.
x=\frac{\sqrt{4578}\left(\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}\right)}{9156}
Iddividi \sqrt{4677521}+i\sqrt{-4677521+83820\sqrt{4578}} b'2\sqrt{4578}.
x=\frac{-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}}{2\sqrt{4578}}
Issa solvi l-ekwazzjoni x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}} fejn ± hija minus. Naqqas i\sqrt{-\left(4677521-83820\sqrt{4578}\right)} minn \sqrt{4677521}.
x=\frac{\sqrt{4578}\left(-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}\right)}{9156}
Iddividi \sqrt{4677521}-i\sqrt{-4677521+83820\sqrt{4578}} b'2\sqrt{4578}.
x=\frac{\sqrt{4578}\left(\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}\right)}{9156} x=\frac{\sqrt{4578}\left(-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}\right)}{9156}
L-ekwazzjoni issa solvuta.
\sqrt{4578}x^{2}-\sqrt{4677521}x=10523-31478
Naqqas 31478 miż-żewġ naħat.
\sqrt{4578}x^{2}-\sqrt{4677521}x=-20955
Naqqas 31478 minn 10523 biex tikseb -20955.
\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x=-20955
Ekwazzjonijiet kwadratiċi bħal din jistgħu jiġu solvuti billi tikkompleta l-kwadrat. Sabiex tikkompleta l-kwadrat, l-ekwazzjoni l-ewwel trid tkun fil-forma x^{2}+bx=c.
\frac{\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x}{\sqrt{4578}}=-\frac{20955}{\sqrt{4578}}
Iddividi ż-żewġ naħat b'\sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{4677521}}{\sqrt{4578}}\right)x=-\frac{20955}{\sqrt{4578}}
Meta tiddividi b'\sqrt{4578} titneħħa l-multiplikazzjoni b'\sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x=-\frac{20955}{\sqrt{4578}}
Iddividi -\sqrt{4677521} b'\sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x=-\frac{6985\sqrt{4578}}{1526}
Iddividi -20955 b'\sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\left(-\frac{\sqrt{21413691138}}{9156}\right)^{2}=-\frac{6985\sqrt{4578}}{1526}+\left(-\frac{\sqrt{21413691138}}{9156}\right)^{2}
Iddividi -\frac{\sqrt{21413691138}}{4578}, il-koeffiċjent tat-terminu x, b'2 biex tikseb -\frac{\sqrt{21413691138}}{9156}. Imbagħad żid il-kwadru ta' -\frac{\sqrt{21413691138}}{9156} maż-żewġ naħat tal-ekwazzjoni. Dan il-pass jagħmel in-naħa tax-xellug tal-ekwazzjoni kwadru perfett.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\frac{4677521}{18312}=-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}
Ikkwadra -\frac{\sqrt{21413691138}}{9156}.
\left(x-\frac{\sqrt{21413691138}}{9156}\right)^{2}=-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}
Fattur x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\frac{4677521}{18312}. B'mod ġenerali, meta x^{2}+bx+c huwa kwadru perfett, dejjem jista' jiġu fatturati bħala \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{\sqrt{21413691138}}{9156}\right)^{2}}=\sqrt{-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}}
Ħu l-għerq kwadrat taż-żewġ naħat tal-ekwazzjoni.
x-\frac{\sqrt{21413691138}}{9156}=\frac{i\sqrt{383727960\sqrt{4578}-21413691138}}{9156} x-\frac{\sqrt{21413691138}}{9156}=-\frac{i\sqrt{383727960\sqrt{4578}-21413691138}}{9156}
Issimplifika.
x=\frac{\sqrt{21413691138}+i\sqrt{383727960\sqrt{4578}-21413691138}}{9156} x=\frac{-i\sqrt{383727960\sqrt{4578}-21413691138}+\sqrt{21413691138}}{9156}
Żid \frac{\sqrt{21413691138}}{9156} maż-żewġ naħat tal-ekwazzjoni.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}