Evalwa
1
Fattur
1
Sehem
Ikkupjat fuq il-klibbord
\frac{\frac{\sqrt{5}}{\sqrt{3}}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{5}{3}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{5}}{\sqrt{3}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{3}.
\frac{\frac{\sqrt{5}\sqrt{3}}{3}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{\frac{\sqrt{15}}{3}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Biex timmultiplika \sqrt{5} u \sqrt{3}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{7}}{\sqrt{3}}}\sqrt{\frac{7}{5}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{7}{3}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{7}}{\sqrt{3}}.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\sqrt{\frac{7}{5}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{7}}{\sqrt{3}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{3}.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{7}\sqrt{3}}{3}}\sqrt{\frac{7}{5}}
Il-kwadrat ta' \sqrt{3} huwa 3.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{21}}{3}}\sqrt{\frac{7}{5}}
Biex timmultiplika \sqrt{7} u \sqrt{3}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\sqrt{15}\times 3}{3\sqrt{21}}\sqrt{\frac{7}{5}}
Iddividi \frac{\sqrt{15}}{3} b'\frac{\sqrt{21}}{3} billi timmultiplika \frac{\sqrt{15}}{3} bir-reċiproku ta' \frac{\sqrt{21}}{3}.
\frac{\sqrt{15}}{\sqrt{21}}\sqrt{\frac{7}{5}}
Annulla 3 fin-numeratur u d-denominatur.
\frac{\sqrt{15}\sqrt{21}}{\left(\sqrt{21}\right)^{2}}\sqrt{\frac{7}{5}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{15}}{\sqrt{21}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{21}.
\frac{\sqrt{15}\sqrt{21}}{21}\sqrt{\frac{7}{5}}
Il-kwadrat ta' \sqrt{21} huwa 21.
\frac{\sqrt{315}}{21}\sqrt{\frac{7}{5}}
Biex timmultiplika \sqrt{15} u \sqrt{21}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{3\sqrt{35}}{21}\sqrt{\frac{7}{5}}
Iffattura 315=3^{2}\times 35. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{3^{2}\times 35} bħala l-prodott tal-għeruq kwadrati \sqrt{3^{2}}\sqrt{35}. Ħu l-għerq kwadrat ta' 3^{2}.
\frac{1}{7}\sqrt{35}\sqrt{\frac{7}{5}}
Iddividi 3\sqrt{35} b'21 biex tikseb\frac{1}{7}\sqrt{35}.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{7}}{\sqrt{5}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{7}{5}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{7}}{\sqrt{5}}.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{7}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{7}}{\sqrt{5}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{5}.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{7}\sqrt{5}}{5}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{35}}{5}
Biex timmultiplika \sqrt{7} u \sqrt{5}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\sqrt{35}}{7\times 5}\sqrt{35}
Immultiplika \frac{1}{7} b'\frac{\sqrt{35}}{5} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur.
\frac{\sqrt{35}}{35}\sqrt{35}
Immultiplika 7 u 5 biex tikseb 35.
\frac{\sqrt{35}\sqrt{35}}{35}
Esprimi \frac{\sqrt{35}}{35}\sqrt{35} bħala frazzjoni waħda.
\frac{35}{35}
Immultiplika \sqrt{35} u \sqrt{35} biex tikseb 35.
1
Iddividi 35 b'35 biex tikseb1.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}