Evalwa
\frac{\sqrt{4064255}}{2016}\approx 0.999999877
Kwizz
Arithmetic
5 problemi simili għal:
\sqrt{ \frac{ 2015 }{ 2016 } } \div \sqrt{ \frac{ 2016 }{ 2017 } }
Sehem
Ikkupjat fuq il-klibbord
\frac{\frac{\sqrt{2015}}{\sqrt{2016}}}{\sqrt{\frac{2016}{2017}}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{2015}{2016}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{2015}}{\sqrt{2016}}.
\frac{\frac{\sqrt{2015}}{12\sqrt{14}}}{\sqrt{\frac{2016}{2017}}}
Iffattura 2016=12^{2}\times 14. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{12^{2}\times 14} bħala l-prodott tal-għeruq kwadrati \sqrt{12^{2}}\sqrt{14}. Ħu l-għerq kwadrat ta' 12^{2}.
\frac{\frac{\sqrt{2015}\sqrt{14}}{12\left(\sqrt{14}\right)^{2}}}{\sqrt{\frac{2016}{2017}}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{2015}}{12\sqrt{14}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{14}.
\frac{\frac{\sqrt{2015}\sqrt{14}}{12\times 14}}{\sqrt{\frac{2016}{2017}}}
Il-kwadrat ta' \sqrt{14} huwa 14.
\frac{\frac{\sqrt{28210}}{12\times 14}}{\sqrt{\frac{2016}{2017}}}
Biex timmultiplika \sqrt{2015} u \sqrt{14}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\frac{\sqrt{28210}}{168}}{\sqrt{\frac{2016}{2017}}}
Immultiplika 12 u 14 biex tikseb 168.
\frac{\frac{\sqrt{28210}}{168}}{\frac{\sqrt{2016}}{\sqrt{2017}}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{2016}{2017}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{2016}}{\sqrt{2017}}.
\frac{\frac{\sqrt{28210}}{168}}{\frac{12\sqrt{14}}{\sqrt{2017}}}
Iffattura 2016=12^{2}\times 14. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{12^{2}\times 14} bħala l-prodott tal-għeruq kwadrati \sqrt{12^{2}}\sqrt{14}. Ħu l-għerq kwadrat ta' 12^{2}.
\frac{\frac{\sqrt{28210}}{168}}{\frac{12\sqrt{14}\sqrt{2017}}{\left(\sqrt{2017}\right)^{2}}}
Irrazzjonalizza d-denominatur tal-\frac{12\sqrt{14}}{\sqrt{2017}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2017}.
\frac{\frac{\sqrt{28210}}{168}}{\frac{12\sqrt{14}\sqrt{2017}}{2017}}
Il-kwadrat ta' \sqrt{2017} huwa 2017.
\frac{\frac{\sqrt{28210}}{168}}{\frac{12\sqrt{28238}}{2017}}
Biex timmultiplika \sqrt{14} u \sqrt{2017}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\sqrt{28210}\times 2017}{168\times 12\sqrt{28238}}
Iddividi \frac{\sqrt{28210}}{168} b'\frac{12\sqrt{28238}}{2017} billi timmultiplika \frac{\sqrt{28210}}{168} bir-reċiproku ta' \frac{12\sqrt{28238}}{2017}.
\frac{\sqrt{28210}\times 2017\sqrt{28238}}{168\times 12\left(\sqrt{28238}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{\sqrt{28210}\times 2017}{168\times 12\sqrt{28238}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{28238}.
\frac{\sqrt{28210}\times 2017\sqrt{28238}}{168\times 12\times 28238}
Il-kwadrat ta' \sqrt{28238} huwa 28238.
\frac{\sqrt{796593980}\times 2017}{168\times 12\times 28238}
Biex timmultiplika \sqrt{28210} u \sqrt{28238}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{\sqrt{796593980}\times 2017}{2016\times 28238}
Immultiplika 168 u 12 biex tikseb 2016.
\frac{\sqrt{796593980}\times 2017}{56927808}
Immultiplika 2016 u 28238 biex tikseb 56927808.
\frac{14\sqrt{4064255}\times 2017}{56927808}
Iffattura 796593980=14^{2}\times 4064255. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{14^{2}\times 4064255} bħala l-prodott tal-għeruq kwadrati \sqrt{14^{2}}\sqrt{4064255}. Ħu l-għerq kwadrat ta' 14^{2}.
\frac{28238\sqrt{4064255}}{56927808}
Immultiplika 14 u 2017 biex tikseb 28238.
\frac{1}{2016}\sqrt{4064255}
Iddividi 28238\sqrt{4064255} b'56927808 biex tikseb\frac{1}{2016}\sqrt{4064255}.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}