Evalwa
\frac{13\sqrt{2009635}}{15}\approx 1228.600495596
Sehem
Ikkupjat fuq il-klibbord
\sqrt{\frac{\left(-3602\right)^{2}+\left(398-3998\right)^{2}+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Naqqas 3998 minn 396 biex tikseb -3602.
\sqrt{\frac{12974404+\left(398-3998\right)^{2}+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Ikkalkula -3602 bil-power ta' 2 u tikseb 12974404.
\sqrt{\frac{12974404+\left(-3600\right)^{2}+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Naqqas 3998 minn 398 biex tikseb -3600.
\sqrt{\frac{12974404+12960000+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Ikkalkula -3600 bil-power ta' 2 u tikseb 12960000.
\sqrt{\frac{25934404+\left(395-3998\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Żid 12974404 u 12960000 biex tikseb 25934404.
\sqrt{\frac{25934404+\left(-3603\right)^{2}+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Naqqas 3998 minn 395 biex tikseb -3603.
\sqrt{\frac{25934404+12981609+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Ikkalkula -3603 bil-power ta' 2 u tikseb 12981609.
\sqrt{\frac{38916013+\left(403-3998\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Żid 25934404 u 12981609 biex tikseb 38916013.
\sqrt{\frac{38916013+\left(-3595\right)^{2}+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Naqqas 3998 minn 403 biex tikseb -3595.
\sqrt{\frac{38916013+12924025+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Ikkalkula -3595 bil-power ta' 2 u tikseb 12924025.
\sqrt{\frac{51840038+\left(399-3998\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Żid 38916013 u 12924025 biex tikseb 51840038.
\sqrt{\frac{51840038+\left(-3599\right)^{2}+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Naqqas 3998 minn 399 biex tikseb -3599.
\sqrt{\frac{51840038+12952801+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Ikkalkula -3599 bil-power ta' 2 u tikseb 12952801.
\sqrt{\frac{64792839+\left(403-3998\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Żid 51840038 u 12952801 biex tikseb 64792839.
\sqrt{\frac{64792839+\left(-3595\right)^{2}+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Naqqas 3998 minn 403 biex tikseb -3595.
\sqrt{\frac{64792839+12924025+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Ikkalkula -3595 bil-power ta' 2 u tikseb 12924025.
\sqrt{\frac{77716864+\left(402-3998\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Żid 64792839 u 12924025 biex tikseb 77716864.
\sqrt{\frac{77716864+\left(-3596\right)^{2}+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Naqqas 3998 minn 402 biex tikseb -3596.
\sqrt{\frac{77716864+12931216+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Ikkalkula -3596 bil-power ta' 2 u tikseb 12931216.
\sqrt{\frac{90648080+\left(399-3998\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Żid 77716864 u 12931216 biex tikseb 90648080.
\sqrt{\frac{90648080+\left(-3599\right)^{2}+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Naqqas 3998 minn 399 biex tikseb -3599.
\sqrt{\frac{90648080+12952801+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Ikkalkula -3599 bil-power ta' 2 u tikseb 12952801.
\sqrt{\frac{103600881+\left(404-3998\right)^{2}+\left(399+3998\right)^{2}}{90}}
Żid 90648080 u 12952801 biex tikseb 103600881.
\sqrt{\frac{103600881+\left(-3594\right)^{2}+\left(399+3998\right)^{2}}{90}}
Naqqas 3998 minn 404 biex tikseb -3594.
\sqrt{\frac{103600881+12916836+\left(399+3998\right)^{2}}{90}}
Ikkalkula -3594 bil-power ta' 2 u tikseb 12916836.
\sqrt{\frac{116517717+\left(399+3998\right)^{2}}{90}}
Żid 103600881 u 12916836 biex tikseb 116517717.
\sqrt{\frac{116517717+4397^{2}}{90}}
Żid 399 u 3998 biex tikseb 4397.
\sqrt{\frac{116517717+19333609}{90}}
Ikkalkula 4397 bil-power ta' 2 u tikseb 19333609.
\sqrt{\frac{135851326}{90}}
Żid 116517717 u 19333609 biex tikseb 135851326.
\sqrt{\frac{67925663}{45}}
Naqqas il-frazzjoni \frac{135851326}{90} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 2.
\frac{\sqrt{67925663}}{\sqrt{45}}
Erġa' ikteb id-diviżjoni tal-għerq kwadrat \sqrt{\frac{67925663}{45}} bħala d-diviżjoni tal-għeruq kwadrati \frac{\sqrt{67925663}}{\sqrt{45}}.
\frac{13\sqrt{401927}}{\sqrt{45}}
Iffattura 67925663=13^{2}\times 401927. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{13^{2}\times 401927} bħala l-prodott tal-għeruq kwadrati \sqrt{13^{2}}\sqrt{401927}. Ħu l-għerq kwadrat ta' 13^{2}.
\frac{13\sqrt{401927}}{3\sqrt{5}}
Iffattura 45=3^{2}\times 5. Erġa' ikteb l-għerq kwadrat tal-prodott \sqrt{3^{2}\times 5} bħala l-prodott tal-għeruq kwadrati \sqrt{3^{2}}\sqrt{5}. Ħu l-għerq kwadrat ta' 3^{2}.
\frac{13\sqrt{401927}\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}
Irrazzjonalizza d-denominatur tal-\frac{13\sqrt{401927}}{3\sqrt{5}} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{5}.
\frac{13\sqrt{401927}\sqrt{5}}{3\times 5}
Il-kwadrat ta' \sqrt{5} huwa 5.
\frac{13\sqrt{2009635}}{3\times 5}
Biex timmultiplika \sqrt{401927} u \sqrt{5}, immultiplika n-numri taħt l-għerq kwadrat.
\frac{13\sqrt{2009635}}{15}
Immultiplika 3 u 5 biex tikseb 15.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}