Aqbeż għall-kontenut ewlieni
Solvi għal X
Tick mark Image
Solvi għal x
Tick mark Image
Graff

Sehem

\sqrt{3} X - \frac{x - 4}{0.7265425280053608} = 164
Evaluate trigonometric functions in the problem
\sqrt{3}X-\left(\frac{x}{0.7265425280053608}+\frac{-4}{0.7265425280053608}\right)=164
Iddividi kull terminu ta' x-4 b'0.7265425280053608 biex tikseb\frac{x}{0.7265425280053608}+\frac{-4}{0.7265425280053608}.
\sqrt{3}X-\left(\frac{x}{0.7265425280053608}+\frac{-40000000000000000}{7265425280053608}\right)=164
Espandi \frac{-4}{0.7265425280053608} billi timmultiplika kemm in-numeratur kif ukoll id-denominatur b'10000000000000000.
\sqrt{3}X-\left(\frac{x}{0.7265425280053608}-\frac{5000000000000000}{908178160006701}\right)=164
Naqqas il-frazzjoni \frac{-40000000000000000}{7265425280053608} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 8.
\sqrt{3}X-\frac{x}{0.7265425280053608}+\frac{5000000000000000}{908178160006701}=164
Biex issib l-oppost ta' \frac{x}{0.7265425280053608}-\frac{5000000000000000}{908178160006701}, sib l-oppost ta' kull terminu.
\sqrt{3}X+\frac{5000000000000000}{908178160006701}=164+\frac{x}{0.7265425280053608}
Żid \frac{x}{0.7265425280053608} maż-żewġ naħat.
\sqrt{3}X=164+\frac{x}{0.7265425280053608}-\frac{5000000000000000}{908178160006701}
Naqqas \frac{5000000000000000}{908178160006701} miż-żewġ naħat.
\sqrt{3}X=\frac{143941218241098964}{908178160006701}+\frac{x}{0.7265425280053608}
Naqqas \frac{5000000000000000}{908178160006701} minn 164 biex tikseb \frac{143941218241098964}{908178160006701}.
\sqrt{3}X=\frac{1250000000000000x+143941218241098964}{908178160006701}
L-ekwazzjoni hija f'forma standard.
\frac{\sqrt{3}X}{\sqrt{3}}=\frac{1250000000000000x+143941218241098964}{908178160006701\sqrt{3}}
Iddividi ż-żewġ naħat b'\sqrt{3}.
X=\frac{1250000000000000x+143941218241098964}{908178160006701\sqrt{3}}
Meta tiddividi b'\sqrt{3} titneħħa l-multiplikazzjoni b'\sqrt{3}.
X=\frac{4\sqrt{3}\left(312500000000000x+35985304560274741\right)}{2724534480020103}
Iddividi \frac{143941218241098964+1250000000000000x}{908178160006701} b'\sqrt{3}.