Aqbeż għall-kontenut ewlieni
Solvi għal N
Tick mark Image
Solvi għal C
Tick mark Image

Sehem

ϕ=555120NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Immultiplika 4500 u 123.36 biex tikseb 555120.
ϕ=555120NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Ikkalkula 10 bil-power ta' -4 u tikseb \frac{1}{10000}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Immultiplika 555120 u \frac{1}{10000} biex tikseb \frac{6939}{125}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
Ikkalkula 10 bil-power ta' -2 u tikseb \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{122}{2}\times 10^{-2}m}))
Immultiplika 18.5 u \frac{1}{100} biex tikseb \frac{37}{200}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times 10^{-2}m}))
Iddividi 122 b'2 biex tikseb61.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times \frac{1}{100}m}))
Ikkalkula 10 bil-power ta' -2 u tikseb \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{61}{100}m}))
Immultiplika 61 u \frac{1}{100} biex tikseb \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}}{\frac{61}{100}}))
Annulla m fin-numeratur u d-denominatur.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{200}\times \frac{100}{61}))
Iddividi \frac{37}{200} b'\frac{61}{100} billi timmultiplika \frac{37}{200} bir-reċiproku ta' \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))
Immultiplika \frac{37}{200} u \frac{100}{61} biex tikseb \frac{37}{122}.
\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))=ϕ
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N=ϕ
L-ekwazzjoni hija f'forma standard.
\frac{\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
Iddividi ż-żewġ naħat b'\frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
Meta tiddividi b'\frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})) titneħħa l-multiplikazzjoni b'\frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{125\sqrt{16253}Cϕ}{846558m^{2}}
Iddividi ϕ b'\frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).