Aqbeż għall-kontenut ewlieni
Solvi għal I (complex solution)
Tick mark Image
Solvi għal I
Tick mark Image
Solvi għal R (complex solution)
Tick mark Image
Solvi għal R
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(r+1\right)^{2}.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Immultiplika R u R biex tikseb R^{2}.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Uża l-propjetà distributtiva biex timmultiplika IR^{2} b'r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Uża l-propjetà distributtiva biex timmultiplika r^{2}+2r+1 b'-18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Naqqas 18000 minn 22000 biex tikseb 4000.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Ikkombina t-termini kollha li fihom I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
L-ekwazzjoni hija f'forma standard.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Iddividi ż-żewġ naħat b'R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Meta tiddividi b'R^{2}r^{2}+2rR^{2}+R^{2} titneħħa l-multiplikazzjoni b'R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{2000\left(2-18r-9r^{2}\right)}{R^{2}\left(r+1\right)^{2}}
Iddividi 4000-36000r-18000r^{2} b'R^{2}r^{2}+2rR^{2}+R^{2}.
IRR\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Immultiplika ż-żewġ naħat tal-ekwazzjoni b'\left(r+1\right)^{2}.
IR^{2}\left(r+1\right)^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Immultiplika R u R biex tikseb R^{2}.
IR^{2}\left(r^{2}+2r+1\right)=22000+\left(r+1\right)^{2}\left(-18000\right)
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r+1\right)^{2}\left(-18000\right)
Uża l-propjetà distributtiva biex timmultiplika IR^{2} b'r^{2}+2r+1.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000+\left(r^{2}+2r+1\right)\left(-18000\right)
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(r+1\right)^{2}.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=22000-18000r^{2}-36000r-18000
Uża l-propjetà distributtiva biex timmultiplika r^{2}+2r+1 b'-18000.
IR^{2}r^{2}+2IR^{2}r+IR^{2}=4000-18000r^{2}-36000r
Naqqas 18000 minn 22000 biex tikseb 4000.
\left(R^{2}r^{2}+2R^{2}r+R^{2}\right)I=4000-18000r^{2}-36000r
Ikkombina t-termini kollha li fihom I.
\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I=4000-36000r-18000r^{2}
L-ekwazzjoni hija f'forma standard.
\frac{\left(R^{2}r^{2}+2rR^{2}+R^{2}\right)I}{R^{2}r^{2}+2rR^{2}+R^{2}}=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Iddividi ż-żewġ naħat b'R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{4000-36000r-18000r^{2}}{R^{2}r^{2}+2rR^{2}+R^{2}}
Meta tiddividi b'R^{2}r^{2}+2rR^{2}+R^{2} titneħħa l-multiplikazzjoni b'R^{2}r^{2}+2rR^{2}+R^{2}.
I=\frac{2000\left(2-18r-9r^{2}\right)}{\left(R\left(r+1\right)\right)^{2}}
Iddividi 4000-18000r^{2}-36000r b'R^{2}r^{2}+2rR^{2}+R^{2}.