Solvi għal x, y
x = \frac{28}{5} = 5\frac{3}{5} = 5.6
y = \frac{13}{5} = 2\frac{3}{5} = 2.6
Graff
Sehem
Ikkupjat fuq il-klibbord
x-y=3,2x+3y=19
Biex issolvi par ta' ekwazzjonijiet bl-użu tas-sostituzzjoni, l-ewwel solvi waħda mill-ekwazzjonijiet għal waħda tal-varjabbli. Imbagħad issostitwixxi r-riżultat għal dak il-varjabbli fl-ekwazzjoni l-oħra.
x-y=3
Agħżel waħda mill-ekwazzjonijiet u solviha għal x billi tiżola x fuq in-naħa tax-xellug tal-sinjal tal-ugwali.
x=y+3
Żid y maż-żewġ naħat tal-ekwazzjoni.
2\left(y+3\right)+3y=19
Issostitwixxi y+3 għal x fl-ekwazzjoni l-oħra, 2x+3y=19.
2y+6+3y=19
Immultiplika 2 b'y+3.
5y+6=19
Żid 2y ma' 3y.
5y=13
Naqqas 6 miż-żewġ naħat tal-ekwazzjoni.
y=\frac{13}{5}
Iddividi ż-żewġ naħat b'5.
x=\frac{13}{5}+3
Issostitwixxi \frac{13}{5} għal y f'x=y+3. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=\frac{28}{5}
Żid 3 ma' \frac{13}{5}.
x=\frac{28}{5},y=\frac{13}{5}
Is-sistema issa solvuta.
x-y=3,2x+3y=19
Qiegħed l-ekwazzjonijiet f'forma standard u mbagħad uża l-matriċijiet biex issolvi s-sistema tal-ekwazzjonijiet.
\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\19\end{matrix}\right)
Ikteb l-ekwazzjonijiet f'forma ta' matriċi.
inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
Immultiplika bix-xellug l-ekwazzjoni skont il-matriċi inversa ta' \left(\begin{matrix}1&-1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
Il-prodott ta' matriċi u l-invers tiegħu huwa l-matriċi tal-identità.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
Immultiplika l-matriċijiet fuq in-naħa tax-xellug tas-sinjal equals.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\right)}&-\frac{-1}{3-\left(-2\right)}\\-\frac{2}{3-\left(-2\right)}&\frac{1}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
Għall-matriċi 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), il-matriċi inversa hija \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), għalhekk l-ekwazzjoni tal-matriċi tista' terġa' tiġi miktuba bħala problema tal-multiplikazzjoni tal-matriċi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
Agħmel l-aritmetika.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 3+\frac{1}{5}\times 19\\-\frac{2}{5}\times 3+\frac{1}{5}\times 19\end{matrix}\right)
Immultiplika l-matriċijiet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{28}{5}\\\frac{13}{5}\end{matrix}\right)
Agħmel l-aritmetika.
x=\frac{28}{5},y=\frac{13}{5}
Estratta l-elementi tal-matriċi x u y.
x-y=3,2x+3y=19
Sabiex insolvu bl-eliminazzjoni, il-koeffiċjenti ta' wieħed mill-varjabbli jrid ikun l-istess fiż-żewġ ekwazzjonijiet sabiex il-varjabbli jikkanċella meta ekwazzjoni waħda titnaqqas mill-oħra.
2x+2\left(-1\right)y=2\times 3,2x+3y=19
Biex tagħmel x u 2x ugwali, immultiplika t-termini kollha fuq kull naħa tal-ewwel ekwazzjoni b'2 u t-termini kollha fuq kull naħa tat-tieni b'1.
2x-2y=6,2x+3y=19
Issimplifika.
2x-2x-2y-3y=6-19
Naqqas 2x+3y=19 minn 2x-2y=6 billi tnaqqas l-istess termini fuq kull naħa tas-sinjal equals.
-2y-3y=6-19
Żid 2x ma' -2x. 2x u -2x jannullaw lil xulxin, biex iħallu ekwazzjoni b'varjabbli waħda li tista' tiġi solvuta.
-5y=6-19
Żid -2y ma' -3y.
-5y=-13
Żid 6 ma' -19.
y=\frac{13}{5}
Iddividi ż-żewġ naħat b'-5.
2x+3\times \frac{13}{5}=19
Issostitwixxi \frac{13}{5} għal y f'2x+3y=19. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
2x+\frac{39}{5}=19
Immultiplika 3 b'\frac{13}{5}.
2x=\frac{56}{5}
Naqqas \frac{39}{5} miż-żewġ naħat tal-ekwazzjoni.
x=\frac{28}{5}
Iddividi ż-żewġ naħat b'2.
x=\frac{28}{5},y=\frac{13}{5}
Is-sistema issa solvuta.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}