Aqbeż għall-kontenut ewlieni
Solvi għal x, y
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x+y=8,-x+y=4
Biex issolvi par ta' ekwazzjonijiet bl-użu tas-sostituzzjoni, l-ewwel solvi waħda mill-ekwazzjonijiet għal waħda tal-varjabbli. Imbagħad issostitwixxi r-riżultat għal dak il-varjabbli fl-ekwazzjoni l-oħra.
x+y=8
Agħżel waħda mill-ekwazzjonijiet u solviha għal x billi tiżola x fuq in-naħa tax-xellug tal-sinjal tal-ugwali.
x=-y+8
Naqqas y miż-żewġ naħat tal-ekwazzjoni.
-\left(-y+8\right)+y=4
Issostitwixxi -y+8 għal x fl-ekwazzjoni l-oħra, -x+y=4.
y-8+y=4
Immultiplika -1 b'-y+8.
2y-8=4
Żid y ma' y.
2y=12
Żid 8 maż-żewġ naħat tal-ekwazzjoni.
y=6
Iddividi ż-żewġ naħat b'2.
x=-6+8
Issostitwixxi 6 għal y f'x=-y+8. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=2
Żid 8 ma' -6.
x=2,y=6
Is-sistema issa solvuta.
x+y=8,-x+y=4
Qiegħed l-ekwazzjonijiet f'forma standard u mbagħad uża l-matriċijiet biex issolvi s-sistema tal-ekwazzjonijiet.
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
Ikteb l-ekwazzjonijiet f'forma ta' matriċi.
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
Immultiplika bix-xellug l-ekwazzjoni skont il-matriċi inversa ta' \left(\begin{matrix}1&1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
Il-prodott ta' matriċi u l-invers tiegħu huwa l-matriċi tal-identità.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
Immultiplika l-matriċijiet fuq in-naħa tax-xellug tas-sinjal equals.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
Għall-matriċi 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), il-matriċi inversa hija \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), għalhekk l-ekwazzjoni tal-matriċi tista' terġa' tiġi miktuba bħala problema tal-multiplikazzjoni tal-matriċi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
Agħmel l-aritmetika.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 8-\frac{1}{2}\times 4\\\frac{1}{2}\times 8+\frac{1}{2}\times 4\end{matrix}\right)
Immultiplika l-matriċijiet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
Agħmel l-aritmetika.
x=2,y=6
Estratta l-elementi tal-matriċi x u y.
x+y=8,-x+y=4
Sabiex insolvu bl-eliminazzjoni, il-koeffiċjenti ta' wieħed mill-varjabbli jrid ikun l-istess fiż-żewġ ekwazzjonijiet sabiex il-varjabbli jikkanċella meta ekwazzjoni waħda titnaqqas mill-oħra.
x+x+y-y=8-4
Naqqas -x+y=4 minn x+y=8 billi tnaqqas l-istess termini fuq kull naħa tas-sinjal equals.
x+x=8-4
Żid y ma' -y. y u -y jannullaw lil xulxin, biex iħallu ekwazzjoni b'varjabbli waħda li tista' tiġi solvuta.
2x=8-4
Żid x ma' x.
2x=4
Żid 8 ma' -4.
x=2
Iddividi ż-żewġ naħat b'2.
-2+y=4
Issostitwixxi 2 għal x f'-x+y=4. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal y direttament.
y=6
Żid 2 maż-żewġ naħat tal-ekwazzjoni.
x=2,y=6
Is-sistema issa solvuta.