Solvi għal x, y
x=56
y=22
Graff
Sehem
Ikkupjat fuq il-klibbord
x+y=78,2x+4y=200
Biex issolvi par ta' ekwazzjonijiet bl-użu tas-sostituzzjoni, l-ewwel solvi waħda mill-ekwazzjonijiet għal waħda tal-varjabbli. Imbagħad issostitwixxi r-riżultat għal dak il-varjabbli fl-ekwazzjoni l-oħra.
x+y=78
Agħżel waħda mill-ekwazzjonijiet u solviha għal x billi tiżola x fuq in-naħa tax-xellug tal-sinjal tal-ugwali.
x=-y+78
Naqqas y miż-żewġ naħat tal-ekwazzjoni.
2\left(-y+78\right)+4y=200
Issostitwixxi -y+78 għal x fl-ekwazzjoni l-oħra, 2x+4y=200.
-2y+156+4y=200
Immultiplika 2 b'-y+78.
2y+156=200
Żid -2y ma' 4y.
2y=44
Naqqas 156 miż-żewġ naħat tal-ekwazzjoni.
y=22
Iddividi ż-żewġ naħat b'2.
x=-22+78
Issostitwixxi 22 għal y f'x=-y+78. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=56
Żid 78 ma' -22.
x=56,y=22
Is-sistema issa solvuta.
x+y=78,2x+4y=200
Qiegħed l-ekwazzjonijiet f'forma standard u mbagħad uża l-matriċijiet biex issolvi s-sistema tal-ekwazzjonijiet.
\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}78\\200\end{matrix}\right)
Ikteb l-ekwazzjonijiet f'forma ta' matriċi.
inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}78\\200\end{matrix}\right)
Immultiplika bix-xellug l-ekwazzjoni skont il-matriċi inversa ta' \left(\begin{matrix}1&1\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}78\\200\end{matrix}\right)
Il-prodott ta' matriċi u l-invers tiegħu huwa l-matriċi tal-identità.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}78\\200\end{matrix}\right)
Immultiplika l-matriċijiet fuq in-naħa tax-xellug tas-sinjal equals.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2}&-\frac{1}{4-2}\\-\frac{2}{4-2}&\frac{1}{4-2}\end{matrix}\right)\left(\begin{matrix}78\\200\end{matrix}\right)
Għall-matriċi 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), il-matriċi inversa hija \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), għalhekk l-ekwazzjoni tal-matriċi tista' terġa' tiġi miktuba bħala problema tal-multiplikazzjoni tal-matriċi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{2}\\-1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}78\\200\end{matrix}\right)
Agħmel l-aritmetika.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 78-\frac{1}{2}\times 200\\-78+\frac{1}{2}\times 200\end{matrix}\right)
Immultiplika l-matriċijiet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}56\\22\end{matrix}\right)
Agħmel l-aritmetika.
x=56,y=22
Estratta l-elementi tal-matriċi x u y.
x+y=78,2x+4y=200
Sabiex insolvu bl-eliminazzjoni, il-koeffiċjenti ta' wieħed mill-varjabbli jrid ikun l-istess fiż-żewġ ekwazzjonijiet sabiex il-varjabbli jikkanċella meta ekwazzjoni waħda titnaqqas mill-oħra.
2x+2y=2\times 78,2x+4y=200
Biex tagħmel x u 2x ugwali, immultiplika t-termini kollha fuq kull naħa tal-ewwel ekwazzjoni b'2 u t-termini kollha fuq kull naħa tat-tieni b'1.
2x+2y=156,2x+4y=200
Issimplifika.
2x-2x+2y-4y=156-200
Naqqas 2x+4y=200 minn 2x+2y=156 billi tnaqqas l-istess termini fuq kull naħa tas-sinjal equals.
2y-4y=156-200
Żid 2x ma' -2x. 2x u -2x jannullaw lil xulxin, biex iħallu ekwazzjoni b'varjabbli waħda li tista' tiġi solvuta.
-2y=156-200
Żid 2y ma' -4y.
-2y=-44
Żid 156 ma' -200.
y=22
Iddividi ż-żewġ naħat b'-2.
2x+4\times 22=200
Issostitwixxi 22 għal y f'2x+4y=200. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
2x+88=200
Immultiplika 4 b'22.
2x=112
Naqqas 88 miż-żewġ naħat tal-ekwazzjoni.
x=56
Iddividi ż-żewġ naħat b'2.
x=56,y=22
Is-sistema issa solvuta.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}