Aqbeż għall-kontenut ewlieni
Solvi għal x, y
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x+y=7,2x+3y=18
Biex issolvi par ta' ekwazzjonijiet bl-użu tas-sostituzzjoni, l-ewwel solvi waħda mill-ekwazzjonijiet għal waħda tal-varjabbli. Imbagħad issostitwixxi r-riżultat għal dak il-varjabbli fl-ekwazzjoni l-oħra.
x+y=7
Agħżel waħda mill-ekwazzjonijiet u solviha għal x billi tiżola x fuq in-naħa tax-xellug tal-sinjal tal-ugwali.
x=-y+7
Naqqas y miż-żewġ naħat tal-ekwazzjoni.
2\left(-y+7\right)+3y=18
Issostitwixxi -y+7 għal x fl-ekwazzjoni l-oħra, 2x+3y=18.
-2y+14+3y=18
Immultiplika 2 b'-y+7.
y+14=18
Żid -2y ma' 3y.
y=4
Naqqas 14 miż-żewġ naħat tal-ekwazzjoni.
x=-4+7
Issostitwixxi 4 għal y f'x=-y+7. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=3
Żid 7 ma' -4.
x=3,y=4
Is-sistema issa solvuta.
x+y=7,2x+3y=18
Qiegħed l-ekwazzjonijiet f'forma standard u mbagħad uża l-matriċijiet biex issolvi s-sistema tal-ekwazzjonijiet.
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\18\end{matrix}\right)
Ikteb l-ekwazzjonijiet f'forma ta' matriċi.
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}7\\18\end{matrix}\right)
Immultiplika bix-xellug l-ekwazzjoni skont il-matriċi inversa ta' \left(\begin{matrix}1&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}7\\18\end{matrix}\right)
Il-prodott ta' matriċi u l-invers tiegħu huwa l-matriċi tal-identità.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}7\\18\end{matrix}\right)
Immultiplika l-matriċijiet fuq in-naħa tax-xellug tas-sinjal equals.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}7\\18\end{matrix}\right)
Għall-matriċi 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), il-matriċi inversa hija \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), għalhekk l-ekwazzjoni tal-matriċi tista' terġa' tiġi miktuba bħala problema tal-multiplikazzjoni tal-matriċi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}7\\18\end{matrix}\right)
Agħmel l-aritmetika.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 7-18\\-2\times 7+18\end{matrix}\right)
Immultiplika l-matriċijiet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Agħmel l-aritmetika.
x=3,y=4
Estratta l-elementi tal-matriċi x u y.
x+y=7,2x+3y=18
Sabiex insolvu bl-eliminazzjoni, il-koeffiċjenti ta' wieħed mill-varjabbli jrid ikun l-istess fiż-żewġ ekwazzjonijiet sabiex il-varjabbli jikkanċella meta ekwazzjoni waħda titnaqqas mill-oħra.
2x+2y=2\times 7,2x+3y=18
Biex tagħmel x u 2x ugwali, immultiplika t-termini kollha fuq kull naħa tal-ewwel ekwazzjoni b'2 u t-termini kollha fuq kull naħa tat-tieni b'1.
2x+2y=14,2x+3y=18
Issimplifika.
2x-2x+2y-3y=14-18
Naqqas 2x+3y=18 minn 2x+2y=14 billi tnaqqas l-istess termini fuq kull naħa tas-sinjal equals.
2y-3y=14-18
Żid 2x ma' -2x. 2x u -2x jannullaw lil xulxin, biex iħallu ekwazzjoni b'varjabbli waħda li tista' tiġi solvuta.
-y=14-18
Żid 2y ma' -3y.
-y=-4
Żid 14 ma' -18.
y=4
Iddividi ż-żewġ naħat b'-1.
2x+3\times 4=18
Issostitwixxi 4 għal y f'2x+3y=18. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
2x+12=18
Immultiplika 3 b'4.
2x=6
Naqqas 12 miż-żewġ naħat tal-ekwazzjoni.
x=3
Iddividi ż-żewġ naħat b'2.
x=3,y=4
Is-sistema issa solvuta.