Aqbeż għall-kontenut ewlieni
Solvi għal x, y
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

x+2y=11,x-5y=-17
Biex issolvi par ta' ekwazzjonijiet bl-użu tas-sostituzzjoni, l-ewwel solvi waħda mill-ekwazzjonijiet għal waħda tal-varjabbli. Imbagħad issostitwixxi r-riżultat għal dak il-varjabbli fl-ekwazzjoni l-oħra.
x+2y=11
Agħżel waħda mill-ekwazzjonijiet u solviha għal x billi tiżola x fuq in-naħa tax-xellug tal-sinjal tal-ugwali.
x=-2y+11
Naqqas 2y miż-żewġ naħat tal-ekwazzjoni.
-2y+11-5y=-17
Issostitwixxi -2y+11 għal x fl-ekwazzjoni l-oħra, x-5y=-17.
-7y+11=-17
Żid -2y ma' -5y.
-7y=-28
Naqqas 11 miż-żewġ naħat tal-ekwazzjoni.
y=4
Iddividi ż-żewġ naħat b'-7.
x=-2\times 4+11
Issostitwixxi 4 għal y f'x=-2y+11. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=-8+11
Immultiplika -2 b'4.
x=3
Żid 11 ma' -8.
x=3,y=4
Is-sistema issa solvuta.
x+2y=11,x-5y=-17
Qiegħed l-ekwazzjonijiet f'forma standard u mbagħad uża l-matriċijiet biex issolvi s-sistema tal-ekwazzjonijiet.
\left(\begin{matrix}1&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\-17\end{matrix}\right)
Ikteb l-ekwazzjonijiet f'forma ta' matriċi.
inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}1&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}11\\-17\end{matrix}\right)
Immultiplika bix-xellug l-ekwazzjoni skont il-matriċi inversa ta' \left(\begin{matrix}1&2\\1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}11\\-17\end{matrix}\right)
Il-prodott ta' matriċi u l-invers tiegħu huwa l-matriċi tal-identità.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}11\\-17\end{matrix}\right)
Immultiplika l-matriċijiet fuq in-naħa tax-xellug tas-sinjal equals.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-2}&-\frac{2}{-5-2}\\-\frac{1}{-5-2}&\frac{1}{-5-2}\end{matrix}\right)\left(\begin{matrix}11\\-17\end{matrix}\right)
Għall-matriċi 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), il-matriċi inversa hija \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), għalhekk l-ekwazzjoni tal-matriċi tista' terġa' tiġi miktuba bħala problema tal-multiplikazzjoni tal-matriċi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&\frac{2}{7}\\\frac{1}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}11\\-17\end{matrix}\right)
Agħmel l-aritmetika.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\times 11+\frac{2}{7}\left(-17\right)\\\frac{1}{7}\times 11-\frac{1}{7}\left(-17\right)\end{matrix}\right)
Immultiplika l-matriċijiet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Agħmel l-aritmetika.
x=3,y=4
Estratta l-elementi tal-matriċi x u y.
x+2y=11,x-5y=-17
Sabiex insolvu bl-eliminazzjoni, il-koeffiċjenti ta' wieħed mill-varjabbli jrid ikun l-istess fiż-żewġ ekwazzjonijiet sabiex il-varjabbli jikkanċella meta ekwazzjoni waħda titnaqqas mill-oħra.
x-x+2y+5y=11+17
Naqqas x-5y=-17 minn x+2y=11 billi tnaqqas l-istess termini fuq kull naħa tas-sinjal equals.
2y+5y=11+17
Żid x ma' -x. x u -x jannullaw lil xulxin, biex iħallu ekwazzjoni b'varjabbli waħda li tista' tiġi solvuta.
7y=11+17
Żid 2y ma' 5y.
7y=28
Żid 11 ma' 17.
y=4
Iddividi ż-żewġ naħat b'7.
x-5\times 4=-17
Issostitwixxi 4 għal y f'x-5y=-17. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x-20=-17
Immultiplika -5 b'4.
x=3
Żid 20 maż-żewġ naħat tal-ekwazzjoni.
x=3,y=4
Is-sistema issa solvuta.