Aqbeż għall-kontenut ewlieni
Solvi għal x
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=\left(x-x_{1}\right)\left(y_{1}+f\right)
Uża l-propjetà distributtiva biex timmultiplika -y_{1} b'x_{1}+g.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=xy_{1}+xf-x_{1}y_{1}-x_{1}f
Uża l-propjetà distributtiva biex timmultiplika x-x_{1} b'y_{1}+f.
xy_{1}+xf-x_{1}y_{1}-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
xy_{1}+xf-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}
Żid x_{1}y_{1} maż-żewġ naħat.
xy_{1}+xf=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}+x_{1}f
Żid x_{1}f maż-żewġ naħat.
xy_{1}+xf=-y_{1}g+x_{1}f
Ikkombina -y_{1}x_{1} u x_{1}y_{1} biex tikseb 0.
\left(y_{1}+f\right)x=-y_{1}g+x_{1}f
Ikkombina t-termini kollha li fihom x.
\left(y_{1}+f\right)x=fx_{1}-gy_{1}
L-ekwazzjoni hija f'forma standard.
\frac{\left(y_{1}+f\right)x}{y_{1}+f}=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Iddividi ż-żewġ naħat b'y_{1}+f.
x=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Meta tiddividi b'y_{1}+f titneħħa l-multiplikazzjoni b'y_{1}+f.