Aqbeż għall-kontenut ewlieni
Solvi għal x, y
Tick mark Image
Graff

Problemi Simili mit-Tiftix tal-Web

Sehem

-3x+4y=-6,5x-y=10
Biex issolvi par ta' ekwazzjonijiet bl-użu tas-sostituzzjoni, l-ewwel solvi waħda mill-ekwazzjonijiet għal waħda tal-varjabbli. Imbagħad issostitwixxi r-riżultat għal dak il-varjabbli fl-ekwazzjoni l-oħra.
-3x+4y=-6
Agħżel waħda mill-ekwazzjonijiet u solviha għal x billi tiżola x fuq in-naħa tax-xellug tal-sinjal tal-ugwali.
-3x=-4y-6
Naqqas 4y miż-żewġ naħat tal-ekwazzjoni.
x=-\frac{1}{3}\left(-4y-6\right)
Iddividi ż-żewġ naħat b'-3.
x=\frac{4}{3}y+2
Immultiplika -\frac{1}{3} b'-4y-6.
5\left(\frac{4}{3}y+2\right)-y=10
Issostitwixxi \frac{4y}{3}+2 għal x fl-ekwazzjoni l-oħra, 5x-y=10.
\frac{20}{3}y+10-y=10
Immultiplika 5 b'\frac{4y}{3}+2.
\frac{17}{3}y+10=10
Żid \frac{20y}{3} ma' -y.
\frac{17}{3}y=0
Naqqas 10 miż-żewġ naħat tal-ekwazzjoni.
y=0
Iddividi ż-żewġ naħat tal-ekwazzjoni b'\frac{17}{3}, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
x=2
Issostitwixxi 0 għal y f'x=\frac{4}{3}y+2. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=2,y=0
Is-sistema issa solvuta.
-3x+4y=-6,5x-y=10
Qiegħed l-ekwazzjonijiet f'forma standard u mbagħad uża l-matriċijiet biex issolvi s-sistema tal-ekwazzjonijiet.
\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\10\end{matrix}\right)
Ikteb l-ekwazzjonijiet f'forma ta' matriċi.
inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Immultiplika bix-xellug l-ekwazzjoni skont il-matriċi inversa ta' \left(\begin{matrix}-3&4\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Il-prodott ta' matriċi u l-invers tiegħu huwa l-matriċi tal-identità.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Immultiplika l-matriċijiet fuq in-naħa tax-xellug tas-sinjal equals.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-4\times 5}&-\frac{4}{-3\left(-1\right)-4\times 5}\\-\frac{5}{-3\left(-1\right)-4\times 5}&-\frac{3}{-3\left(-1\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
Għall-matriċi 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), il-matriċi inversa hija \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), għalhekk l-ekwazzjoni tal-matriċi tista' terġa' tiġi miktuba bħala problema tal-multiplikazzjoni tal-matriċi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{4}{17}\\\frac{5}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
Agħmel l-aritmetika.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\left(-6\right)+\frac{4}{17}\times 10\\\frac{5}{17}\left(-6\right)+\frac{3}{17}\times 10\end{matrix}\right)
Immultiplika l-matriċijiet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Agħmel l-aritmetika.
x=2,y=0
Estratta l-elementi tal-matriċi x u y.
-3x+4y=-6,5x-y=10
Sabiex insolvu bl-eliminazzjoni, il-koeffiċjenti ta' wieħed mill-varjabbli jrid ikun l-istess fiż-żewġ ekwazzjonijiet sabiex il-varjabbli jikkanċella meta ekwazzjoni waħda titnaqqas mill-oħra.
5\left(-3\right)x+5\times 4y=5\left(-6\right),-3\times 5x-3\left(-1\right)y=-3\times 10
Biex tagħmel -3x u 5x ugwali, immultiplika t-termini kollha fuq kull naħa tal-ewwel ekwazzjoni b'5 u t-termini kollha fuq kull naħa tat-tieni b'-3.
-15x+20y=-30,-15x+3y=-30
Issimplifika.
-15x+15x+20y-3y=-30+30
Naqqas -15x+3y=-30 minn -15x+20y=-30 billi tnaqqas l-istess termini fuq kull naħa tas-sinjal equals.
20y-3y=-30+30
Żid -15x ma' 15x. -15x u 15x jannullaw lil xulxin, biex iħallu ekwazzjoni b'varjabbli waħda li tista' tiġi solvuta.
17y=-30+30
Żid 20y ma' -3y.
17y=0
Żid -30 ma' 30.
y=0
Iddividi ż-żewġ naħat b'17.
5x=10
Issostitwixxi 0 għal y f'5x-y=10. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=2
Iddividi ż-żewġ naħat b'5.
x=2,y=0
Is-sistema issa solvuta.