Aqbeż għall-kontenut ewlieni
Solvi għal f, x, g, h, j
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

h=i
Ikkunsidra r-raba' ekwazzjoni. Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
i=f\left(-3\right)
Ikkunsidra t-tielet ekwazzjoni. Inserixxi l-valuri magħrufa tal-varjabbli fl-ekwazzjoni.
\frac{i}{-3}=f
Iddividi ż-żewġ naħat b'-3.
-\frac{1}{3}i=f
Iddividi i b'-3 biex tikseb-\frac{1}{3}i.
f=-\frac{1}{3}i
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
-\frac{1}{3}ix=-6x+3
Ikkunsidra l-ewwel ekwazzjoni. Inserixxi l-valuri magħrufa tal-varjabbli fl-ekwazzjoni.
-\frac{1}{3}ix+6x=3
Żid 6x maż-żewġ naħat.
\left(6-\frac{1}{3}i\right)x=3
Ikkombina -\frac{1}{3}ix u 6x biex tikseb \left(6-\frac{1}{3}i\right)x.
x=\frac{3}{6-\frac{1}{3}i}
Iddividi ż-żewġ naħat b'6-\frac{1}{3}i.
x=\frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}
Immultiplika kemm in-numeratur u d-denominatur ta' \frac{3}{6-\frac{1}{3}i} bil-konjugat kumpless tad-denominatur, 6+\frac{1}{3}i.
x=\frac{18+i}{\frac{325}{9}}
Agħmel il-multiplikazzjonijiet fi \frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}.
x=\frac{162}{325}+\frac{9}{325}i
Iddividi 18+i b'\frac{325}{9} biex tikseb\frac{162}{325}+\frac{9}{325}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=3\left(\frac{162}{325}+\frac{9}{325}i\right)+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Ikkunsidra t-tieni ekwazzjoni. Inserixxi l-valuri magħrufa tal-varjabbli fl-ekwazzjoni.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Immultiplika 3 u \frac{162}{325}+\frac{9}{325}i biex tikseb \frac{486}{325}+\frac{27}{325}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{214}{27}-\frac{971}{729}i\right)
Ikkalkula \frac{162}{325}+\frac{9}{325}i bil-power ta' -3 u tikseb \frac{214}{27}-\frac{971}{729}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+\left(\frac{1498}{9}-\frac{6797}{243}i\right)
Immultiplika 21 u \frac{214}{27}-\frac{971}{729}i biex tikseb \frac{1498}{9}-\frac{6797}{243}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{491224}{2925}-\frac{2202464}{78975}i
Żid \frac{486}{325}+\frac{27}{325}i u \frac{1498}{9}-\frac{6797}{243}i biex tikseb \frac{491224}{2925}-\frac{2202464}{78975}i.
g=\frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i}
Iddividi ż-żewġ naħat b'\frac{162}{325}+\frac{9}{325}i.
g=\frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}
Immultiplika kemm in-numeratur u d-denominatur ta' \frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i} bil-konjugat kumpless tad-denominatur, \frac{162}{325}-\frac{9}{325}i.
g=\frac{\frac{55984}{675}-\frac{18088}{975}i}{\frac{81}{325}}
Agħmel il-multiplikazzjonijiet fi \frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}.
g=\frac{727792}{2187}-\frac{18088}{243}i
Iddividi \frac{55984}{675}-\frac{18088}{975}i b'\frac{81}{325} biex tikseb\frac{727792}{2187}-\frac{18088}{243}i.
f=-\frac{1}{3}i x=\frac{162}{325}+\frac{9}{325}i g=\frac{727792}{2187}-\frac{18088}{243}i h=i j=i
Is-sistema issa solvuta.