Aqbeż għall-kontenut ewlieni
Solvi għal x, y
Tick mark Image
Graff

Sehem

\frac{1-\frac{2}{\sqrt{2}+1+1}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Ikkunsidra l-ewwel ekwazzjoni. Inserixxi l-valuri magħrufa tal-varjabbli fl-ekwazzjoni.
\frac{1-\frac{2}{\sqrt{2}+2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Żid 1 u 1 biex tikseb 2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Irrazzjonalizza d-denominatur tal-\frac{2}{\sqrt{2}+2} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}-2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Ikkunsidra li \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{2-4}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Ikkwadra \sqrt{2}. Ikkwadra 2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{-2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Naqqas 4 minn 2 biex tikseb -2.
\frac{1-\left(-\left(\sqrt{2}-2\right)\right)}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Annulla -2 u -2.
\frac{1+\sqrt{2}-2}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
L-oppost ta' -\left(\sqrt{2}-2\right) huwa \sqrt{2}-2.
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Naqqas 2 minn 1 biex tikseb -1.
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Uża teorema binomjali \left(a+b\right)^{2}=a^{2}+2ab+b^{2} biex tespandi \left(\sqrt{2}+1\right)^{2}.
\frac{-1+\sqrt{2}}{\frac{2+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{-1+\sqrt{2}}{\frac{3+2\sqrt{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Żid 2 u 1 biex tikseb 3.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+1+1}}=y
Żid 3 u 1 biex tikseb 4.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2}}=y
Żid 1 u 1 biex tikseb 2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}=y
Irrazzjonalizza d-denominatur tal-\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2} billi timmultiplika in-numeratur u d-denominatur mill-\sqrt{2}-2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}=y
Ikkunsidra li \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{2-4}}=y
Ikkwadra \sqrt{2}. Ikkwadra 2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2}}=y
Naqqas 4 minn 2 biex tikseb -2.
\frac{\left(-1+\sqrt{2}\right)\left(-2\right)}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
Iddividi -1+\sqrt{2} b'\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2} billi timmultiplika -1+\sqrt{2} bir-reċiproku ta' \frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2}.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
Uża l-propjetà distributtiva biex timmultiplika -1+\sqrt{2} b'-2.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\sqrt{2}-2\right)\left(\sqrt{2}-2\right)}=y
Uża l-propjetà distributtiva biex timmultiplika -2 b'\sqrt{2}+1.
\frac{2-2\sqrt{2}}{\left(4-2\right)\left(\sqrt{2}-2\right)}=y
Ikkombina 2\sqrt{2} u -2\sqrt{2} biex tikseb 0.
\frac{2-2\sqrt{2}}{2\left(\sqrt{2}-2\right)}=y
Naqqas 2 minn 4 biex tikseb 2.
\frac{2-2\sqrt{2}}{2\sqrt{2}-4}=y
Uża l-propjetà distributtiva biex timmultiplika 2 b'\sqrt{2}-2.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right)}=y
Irrazzjonalizza d-denominatur tal-\frac{2-2\sqrt{2}}{2\sqrt{2}-4} billi timmultiplika in-numeratur u d-denominatur mill-2\sqrt{2}+4.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}\right)^{2}-4^{2}}=y
Ikkunsidra li \left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right). Il-multiplikazzjoni tista' tiġi ttrasformata fid-differenza tal-kwadrati li jużaw ir-regola: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{2^{2}\left(\sqrt{2}\right)^{2}-4^{2}}=y
Espandi \left(2\sqrt{2}\right)^{2}.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\left(\sqrt{2}\right)^{2}-4^{2}}=y
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\times 2-4^{2}}=y
Il-kwadrat ta' \sqrt{2} huwa 2.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-4^{2}}=y
Immultiplika 4 u 2 biex tikseb 8.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-16}=y
Ikkalkula 4 bil-power ta' 2 u tikseb 16.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}=y
Naqqas 16 minn 8 biex tikseb -8.
y=\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}
Ibdel in-naħat sabiex it-termini varjabbli kollha jkunu fuq in-naħa tax-xellug.
y=\frac{-4\sqrt{2}+8-4\left(\sqrt{2}\right)^{2}}{-8}
Uża l-propjetà distributtiva biex timmultiplika 2-2\sqrt{2} b'2\sqrt{2}+4 u kkombina termini simili.
y=\frac{-4\sqrt{2}+8-4\times 2}{-8}
Il-kwadrat ta' \sqrt{2} huwa 2.
y=\frac{-4\sqrt{2}+8-8}{-8}
Immultiplika -4 u 2 biex tikseb -8.
y=\frac{-4\sqrt{2}}{-8}
Naqqas 8 minn 8 biex tikseb 0.
y=\frac{1}{2}\sqrt{2}
Iddividi -4\sqrt{2} b'-8 biex tikseb\frac{1}{2}\sqrt{2}.
x=\sqrt{2}+1 y=\frac{1}{2}\sqrt{2}
Is-sistema issa solvuta.