\left\{ \begin{array} { l } { 2 x - 3 y = 15 } \\ { x + y = 1 } \end{array} \right.
Solvi għal x, y
x = \frac{18}{5} = 3\frac{3}{5} = 3.6
y = -\frac{13}{5} = -2\frac{3}{5} = -2.6
Graff
Sehem
Ikkupjat fuq il-klibbord
2x-3y=15,x+y=1
Biex issolvi par ta' ekwazzjonijiet bl-użu tas-sostituzzjoni, l-ewwel solvi waħda mill-ekwazzjonijiet għal waħda tal-varjabbli. Imbagħad issostitwixxi r-riżultat għal dak il-varjabbli fl-ekwazzjoni l-oħra.
2x-3y=15
Agħżel waħda mill-ekwazzjonijiet u solviha għal x billi tiżola x fuq in-naħa tax-xellug tal-sinjal tal-ugwali.
2x=3y+15
Żid 3y maż-żewġ naħat tal-ekwazzjoni.
x=\frac{1}{2}\left(3y+15\right)
Iddividi ż-żewġ naħat b'2.
x=\frac{3}{2}y+\frac{15}{2}
Immultiplika \frac{1}{2} b'15+3y.
\frac{3}{2}y+\frac{15}{2}+y=1
Issostitwixxi \frac{15+3y}{2} għal x fl-ekwazzjoni l-oħra, x+y=1.
\frac{5}{2}y+\frac{15}{2}=1
Żid \frac{3y}{2} ma' y.
\frac{5}{2}y=-\frac{13}{2}
Naqqas \frac{15}{2} miż-żewġ naħat tal-ekwazzjoni.
y=-\frac{13}{5}
Iddividi ż-żewġ naħat tal-ekwazzjoni b'\frac{5}{2}, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
x=\frac{3}{2}\left(-\frac{13}{5}\right)+\frac{15}{2}
Issostitwixxi -\frac{13}{5} għal y f'x=\frac{3}{2}y+\frac{15}{2}. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=-\frac{39}{10}+\frac{15}{2}
Immultiplika \frac{3}{2} b'-\frac{13}{5} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur. Imbagħad naqqas il-frazzjoni għall-inqas termini jekk possibbli.
x=\frac{18}{5}
Żid \frac{15}{2} ma' -\frac{39}{10} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
x=\frac{18}{5},y=-\frac{13}{5}
Is-sistema issa solvuta.
2x-3y=15,x+y=1
Qiegħed l-ekwazzjonijiet f'forma standard u mbagħad uża l-matriċijiet biex issolvi s-sistema tal-ekwazzjonijiet.
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\1\end{matrix}\right)
Ikteb l-ekwazzjonijiet f'forma ta' matriċi.
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}15\\1\end{matrix}\right)
Immultiplika bix-xellug l-ekwazzjoni skont il-matriċi inversa ta' \left(\begin{matrix}2&-3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}15\\1\end{matrix}\right)
Il-prodott ta' matriċi u l-invers tiegħu huwa l-matriċi tal-identità.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}15\\1\end{matrix}\right)
Immultiplika l-matriċijiet fuq in-naħa tax-xellug tas-sinjal equals.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}15\\1\end{matrix}\right)
Għall-matriċi 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), il-matriċi inversa hija \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), għalhekk l-ekwazzjoni tal-matriċi tista' terġa' tiġi miktuba bħala problema tal-multiplikazzjoni tal-matriċi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}15\\1\end{matrix}\right)
Agħmel l-aritmetika.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 15+\frac{3}{5}\\-\frac{1}{5}\times 15+\frac{2}{5}\end{matrix}\right)
Immultiplika l-matriċijiet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}\\-\frac{13}{5}\end{matrix}\right)
Agħmel l-aritmetika.
x=\frac{18}{5},y=-\frac{13}{5}
Estratta l-elementi tal-matriċi x u y.
2x-3y=15,x+y=1
Sabiex insolvu bl-eliminazzjoni, il-koeffiċjenti ta' wieħed mill-varjabbli jrid ikun l-istess fiż-żewġ ekwazzjonijiet sabiex il-varjabbli jikkanċella meta ekwazzjoni waħda titnaqqas mill-oħra.
2x-3y=15,2x+2y=2
Biex tagħmel 2x u x ugwali, immultiplika t-termini kollha fuq kull naħa tal-ewwel ekwazzjoni b'1 u t-termini kollha fuq kull naħa tat-tieni b'2.
2x-2x-3y-2y=15-2
Naqqas 2x+2y=2 minn 2x-3y=15 billi tnaqqas l-istess termini fuq kull naħa tas-sinjal equals.
-3y-2y=15-2
Żid 2x ma' -2x. 2x u -2x jannullaw lil xulxin, biex iħallu ekwazzjoni b'varjabbli waħda li tista' tiġi solvuta.
-5y=15-2
Żid -3y ma' -2y.
-5y=13
Żid 15 ma' -2.
y=-\frac{13}{5}
Iddividi ż-żewġ naħat b'-5.
x-\frac{13}{5}=1
Issostitwixxi -\frac{13}{5} għal y f'x+y=1. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=\frac{18}{5}
Żid \frac{13}{5} maż-żewġ naħat tal-ekwazzjoni.
x=\frac{18}{5},y=-\frac{13}{5}
Is-sistema issa solvuta.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}