\left\{ \begin{array} { c } { 2 x + 3 y = 5 } \\ { x + 3 y = 6 } \end{array} \right.
Solvi għal x, y
x=-1
y = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graff
Sehem
Ikkupjat fuq il-klibbord
2x+3y=5,x+3y=6
Biex issolvi par ta' ekwazzjonijiet bl-użu tas-sostituzzjoni, l-ewwel solvi waħda mill-ekwazzjonijiet għal waħda tal-varjabbli. Imbagħad issostitwixxi r-riżultat għal dak il-varjabbli fl-ekwazzjoni l-oħra.
2x+3y=5
Agħżel waħda mill-ekwazzjonijiet u solviha għal x billi tiżola x fuq in-naħa tax-xellug tal-sinjal tal-ugwali.
2x=-3y+5
Naqqas 3y miż-żewġ naħat tal-ekwazzjoni.
x=\frac{1}{2}\left(-3y+5\right)
Iddividi ż-żewġ naħat b'2.
x=-\frac{3}{2}y+\frac{5}{2}
Immultiplika \frac{1}{2} b'-3y+5.
-\frac{3}{2}y+\frac{5}{2}+3y=6
Issostitwixxi \frac{-3y+5}{2} għal x fl-ekwazzjoni l-oħra, x+3y=6.
\frac{3}{2}y+\frac{5}{2}=6
Żid -\frac{3y}{2} ma' 3y.
\frac{3}{2}y=\frac{7}{2}
Naqqas \frac{5}{2} miż-żewġ naħat tal-ekwazzjoni.
y=\frac{7}{3}
Iddividi ż-żewġ naħat tal-ekwazzjoni b'\frac{3}{2}, li hija l-istess bħal multiplikazzjoni taż-żewġ naħat bir-reċiproku tal-frazzjoni.
x=-\frac{3}{2}\times \frac{7}{3}+\frac{5}{2}
Issostitwixxi \frac{7}{3} għal y f'x=-\frac{3}{2}y+\frac{5}{2}. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal x direttament.
x=\frac{-7+5}{2}
Immultiplika -\frac{3}{2} b'\frac{7}{3} billi timmultiplika n-numeratur bin-numeratur u d-denominatur bid-denominatur. Imbagħad naqqas il-frazzjoni għall-inqas termini jekk possibbli.
x=-1
Żid \frac{5}{2} ma' -\frac{7}{2} biex issib id-denominatur komuni u żżid in-numeraturi. Imbagħad naqqas il-frazzjoni għat-termini l-aktar baxxi jekk possibbli.
x=-1,y=\frac{7}{3}
Is-sistema issa solvuta.
2x+3y=5,x+3y=6
Qiegħed l-ekwazzjonijiet f'forma standard u mbagħad uża l-matriċijiet biex issolvi s-sistema tal-ekwazzjonijiet.
\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
Ikteb l-ekwazzjonijiet f'forma ta' matriċi.
inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Immultiplika bix-xellug l-ekwazzjoni skont il-matriċi inversa ta' \left(\begin{matrix}2&3\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Il-prodott ta' matriċi u l-invers tiegħu huwa l-matriċi tal-identità.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Immultiplika l-matriċijiet fuq in-naħa tax-xellug tas-sinjal equals.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3}&-\frac{3}{2\times 3-3}\\-\frac{1}{2\times 3-3}&\frac{2}{2\times 3-3}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Għall-matriċi 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), il-matriċi inversa hija \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), għalhekk l-ekwazzjoni tal-matriċi tista' terġa' tiġi miktuba bħala problema tal-multiplikazzjoni tal-matriċi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Agħmel l-aritmetika.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5-6\\-\frac{1}{3}\times 5+\frac{2}{3}\times 6\end{matrix}\right)
Immultiplika l-matriċijiet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{7}{3}\end{matrix}\right)
Agħmel l-aritmetika.
x=-1,y=\frac{7}{3}
Estratta l-elementi tal-matriċi x u y.
2x+3y=5,x+3y=6
Sabiex insolvu bl-eliminazzjoni, il-koeffiċjenti ta' wieħed mill-varjabbli jrid ikun l-istess fiż-żewġ ekwazzjonijiet sabiex il-varjabbli jikkanċella meta ekwazzjoni waħda titnaqqas mill-oħra.
2x-x+3y-3y=5-6
Naqqas x+3y=6 minn 2x+3y=5 billi tnaqqas l-istess termini fuq kull naħa tas-sinjal equals.
2x-x=5-6
Żid 3y ma' -3y. 3y u -3y jannullaw lil xulxin, biex iħallu ekwazzjoni b'varjabbli waħda li tista' tiġi solvuta.
x=5-6
Żid 2x ma' -x.
x=-1
Żid 5 ma' -6.
-1+3y=6
Issostitwixxi -1 għal x f'x+3y=6. Billi l-ekwazzjoni riżultanti fiha biss varjabbli waħda, tista' ssolvi għal y direttament.
3y=7
Żid 1 maż-żewġ naħat tal-ekwazzjoni.
x=-1,y=\frac{7}{3}
Is-sistema issa solvuta.
Eżempji
Ekwazzjoni kwadratika
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwazzjoni lineari
y = 3x + 4
Aritmetika
699 * 533
Matriċi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekwazzjoni simultanja
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenzazzjoni
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazzjoni
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}