Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image

Sehem

\int _{0}^{20}-0.05x+\frac{5}{1000}x^{2}\mathrm{d}x
Espandi \frac{0.05}{10} billi timmultiplika kemm in-numeratur kif ukoll id-denominatur b'100.
\int _{0}^{20}-0.05x+\frac{1}{200}x^{2}\mathrm{d}x
Naqqas il-frazzjoni \frac{5}{1000} għat-termini l-aktar baxxi billi testratta u tikkanċella barra 5.
\int -\frac{x}{20}+\frac{x^{2}}{200}\mathrm{d}x
L-ewwel evalwa l-integru indefinit.
\int -\frac{x}{20}\mathrm{d}x+\int \frac{x^{2}}{200}\mathrm{d}x
Tintegra s-somma terminu b'terminu.
-\frac{\int x\mathrm{d}x}{20}+\frac{\int x^{2}\mathrm{d}x}{200}
Iffattura ‘l barra l-kostanti f’kull wieħed minn dawn it-termini.
-\frac{x^{2}}{40}+\frac{\int x^{2}\mathrm{d}x}{200}
Minn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} għal k\neq -1, issostitwixxi \int x\mathrm{d}x ma' \frac{x^{2}}{2}. Immultiplika -0.05 b'\frac{x^{2}}{2}.
-\frac{x^{2}}{40}+\frac{x^{3}}{600}
Minn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} għal k\neq -1, issostitwixxi \int x^{2}\mathrm{d}x ma' \frac{x^{3}}{3}. Immultiplika \frac{1}{200} b'\frac{x^{3}}{3}.
-\frac{20^{2}}{40}+\frac{20^{3}}{600}-\left(-\frac{0^{2}}{40}+\frac{0^{3}}{600}\right)
L-integru definit huwa l-antiderivattiv tal-espressjoni evalwata fil-limitu superjuri tal-integrazzjoni minus l-antiderivattiv evalwat fil-limitu inferjuri tal-integrazzjoni.
\frac{10}{3}
Issimplifika.