Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\int _{0}^{1}4x\left(1+3x+3x^{2}+x^{3}\right)\mathrm{d}x
Uża teorema binomjali \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} biex tespandi \left(1+x\right)^{3}.
\int _{0}^{1}4x+12x^{2}+12x^{3}+4x^{4}\mathrm{d}x
Uża l-propjetà distributtiva biex timmultiplika 4x b'1+3x+3x^{2}+x^{3}.
\int 4x+12x^{2}+12x^{3}+4x^{4}\mathrm{d}x
L-ewwel evalwa l-integru indefinit.
\int 4x\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 12x^{3}\mathrm{d}x+\int 4x^{4}\mathrm{d}x
Tintegra s-somma terminu b'terminu.
4\int x\mathrm{d}x+12\int x^{2}\mathrm{d}x+12\int x^{3}\mathrm{d}x+4\int x^{4}\mathrm{d}x
Iffattura ‘l barra l-kostanti f’kull wieħed minn dawn it-termini.
2x^{2}+12\int x^{2}\mathrm{d}x+12\int x^{3}\mathrm{d}x+4\int x^{4}\mathrm{d}x
Minn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} għal k\neq -1, issostitwixxi \int x\mathrm{d}x ma' \frac{x^{2}}{2}. Immultiplika 4 b'\frac{x^{2}}{2}.
2x^{2}+4x^{3}+12\int x^{3}\mathrm{d}x+4\int x^{4}\mathrm{d}x
Minn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} għal k\neq -1, issostitwixxi \int x^{2}\mathrm{d}x ma' \frac{x^{3}}{3}. Immultiplika 12 b'\frac{x^{3}}{3}.
2x^{2}+4x^{3}+3x^{4}+4\int x^{4}\mathrm{d}x
Minn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} għal k\neq -1, issostitwixxi \int x^{3}\mathrm{d}x ma' \frac{x^{4}}{4}. Immultiplika 12 b'\frac{x^{4}}{4}.
2x^{2}+4x^{3}+3x^{4}+\frac{4x^{5}}{5}
Minn \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} għal k\neq -1, issostitwixxi \int x^{4}\mathrm{d}x ma' \frac{x^{5}}{5}. Immultiplika 4 b'\frac{x^{5}}{5}.
2\times 1^{2}+4\times 1^{3}+3\times 1^{4}+\frac{4}{5}\times 1^{5}-\left(2\times 0^{2}+4\times 0^{3}+3\times 0^{4}+\frac{4}{5}\times 0^{5}\right)
L-integru definit huwa l-antiderivattiv tal-espressjoni evalwata fil-limitu superjuri tal-integrazzjoni minus l-antiderivattiv evalwat fil-limitu inferjuri tal-integrazzjoni.
\frac{49}{5}
Issimplifika.