Aqbeż għall-kontenut ewlieni
Evalwa
Tick mark Image
Iddifferenzja w.r.t. x
Tick mark Image

Problemi Simili mit-Tiftix tal-Web

Sehem

\int \left(-\frac{1}{3}ab^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Immultiplika a u a biex tikseb a^{2}.
\int \left(-\frac{1}{3}\right)^{2}a^{2}\left(b^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Espandi \left(-\frac{1}{3}ab^{2}\right)^{2}.
\int \left(-\frac{1}{3}\right)^{2}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\int \frac{1}{9}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Ikkalkula -\frac{1}{3} bil-power ta' 2 u tikseb \frac{1}{9}.
\int \frac{1}{9}a^{2}b^{4}-\left(-6a^{2}b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Immultiplika 2 u -3 biex tikseb -6.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Espandi \left(-6a^{2}b^{2}\right)^{2}.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Ikkalkula -6 bil-power ta' 2 u tikseb 36.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}\left(b^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Espandi \left(2ab^{2}\right)^{2}.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Biex tgħolli l-qawwa ta' numru għal qawwa oħra, immultiplika l-esponenti. Immultiplika 2 u 2 biex tikseb 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(4a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Ikkalkula 2 bil-power ta' 2 u tikseb 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{2}b^{4}a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Immultiplika 4 u -9 biex tikseb -36.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{4}b^{4}+a^{2}b^{4}\right)\mathrm{d}x
Biex timmultiplika l-qawwa tal-istess bażi, żid l-esponenti tagħhom. Żid 2 u 2 biex tikseb 4.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}+36a^{4}b^{4}-a^{2}b^{4}\mathrm{d}x
Biex issib l-oppost ta' -36a^{4}b^{4}+a^{2}b^{4}, sib l-oppost ta' kull terminu.
\int \frac{1}{9}a^{2}b^{4}-a^{2}b^{4}\mathrm{d}x
Ikkombina -36a^{4}b^{4} u 36a^{4}b^{4} biex tikseb 0.
\int -\frac{8}{9}a^{2}b^{4}\mathrm{d}x
Ikkombina \frac{1}{9}a^{2}b^{4} u -a^{2}b^{4} biex tikseb -\frac{8}{9}a^{2}b^{4}.
\left(-\frac{8a^{2}b^{4}}{9}\right)x
Sib l-integru ta' -\frac{8a^{2}b^{4}}{9} billi tuża t-tabella tar-regola tal-integrali komuni \int a\mathrm{d}x=ax.
-\frac{8a^{2}b^{4}x}{9}
Issimplifika.
-\frac{8a^{2}b^{4}x}{9}+С
Jekk F\left(x\right) huwa antiderivattiv ta' f\left(x\right), allura s-sett tal-antiderivati kollha ta' f\left(x\right) jingħata minn F\left(x\right)+C. Għalhekk, żid il-kostanti ta' integrazzjoni C\in \mathrm{R} mar-riżultat.